Effects of chronic restraint stress on social behaviors and the number of hypothalamic oxytocin neurons in male rats

Jin Li, Han-Xia Li, Xiao-Jing Shou, Xin-Jie Xu, Tian-Jia Song, Song-Ping Han, Rong Zhang, Ji-Sheng Han

1. Introduction

The neuropeptides oxytocin (OXT) and arginine vasopressin (AVP) are evolutionarily highly involved in the regulation of various aspects of mammalian social behaviors (Lukas and Neumann, 2013; Meyer-Lindenberg et al., 2011; Harony and Wagner, 2010). Studies provide evidence that the function of these neuropeptides is impaired in mental disorders that are characterized by severe social deficits (Harony and Wagner, 2010; Caronna et al., 2008; Aspe-Sanchez et al., 2015). However, despite the neurobiological mechanisms of these disorders are largely unknown, researches in rodents and humans suggest OXT and AVP might be promising targets for such disorders.

Several lines of evidence suggest that the two peptides are crucial for regulating social behaviors impaired in autism spectrum disorders (ASD), mainly including affiliative behavior, social cognition, and social approach (Harony and Wagner, 2010; Caronna et al., 2008; Strathearn, 2009). Modahl et al. (1998) reported that plasma OXT levels were lower in children with ASD than in Control group. Gene association studies showed a link between polymorphisms in the OXT and/or AVP receptors in patients with ASD (Lauritsen et al., 2006; McCauley et al., 2005; Kim et al., 2002). There was also evidence that administration of OXT improves social cognition and reduces stereotypic movements in adults with ASD (Hollander et al., 2003). Some studies in social anxiety disorder (SAD) showed that OXT administration improved speech performance (Guastella et al., 2009) and attenuated the heightened amygdala reactivity to fearful faces in patients with SAD (Labuschagne et al., 2010).

The activity of paraventricular (PVN) and supraoptic (SON) nuclei of the anterior hypothalamus might be stimulus-dependent (Briski and

Abstract

Oxytocin (OXT) and vasopressin (AVP) are considered to be related to mammalian social behavior and the regulation of stress responses. The present study investigated the effects of chronic homotypic restraint stress (CHRS) on social behaviors and anxiety, as well as its repercussions on OXT- and AVP-positive neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) nuclei in rat. Male Sprague-Dawley rats receiving CHRS were exposed to repeated restraint stress of 30 min per day for 10 days. Changes in social approach behaviors were evaluated with the three-chambered social approach task. Changes in anxiety-like behaviors were evaluated in the light-dark box test. The number of neurons expressing oxytocin and/or vasopressin in PVN and SON were examined by immunohistochemistry techniques. The results demonstrated that social approach was increased and anxiety was decreased following 10-day exposure to CHRS. Furthermore, the number of OXT-immunoreactive cells in PVN was increased significantly, whereas no change in SON was seen. The number of AVP immunoreactive cells either in PVN or SON was unaffected. The results of this study suggest that certain types of stress could be effective in the treatment of social dysfunction in persons with mental disorders such as autism, social anxiety disorder. The therapeutic effects may be mediated by changes in the function of OXT neurons in PVN.
Gillen, 2001; Palkovits, 2000). Previous studies showed that PVN and SON are activated by osmotic and reproductive stimuli as well as during stress (Engelmann and Ludwig, 2004; Wotjak et al., 1998; Engelmann et al., 1999). OXT and AVP are nonapeptides synthesized in PVN and SON of the hypothalamus (Sofroniew, 1983). Besides being involved in regulating mammalian social behaviors, they also play an important role in the regulation of stress response (Nishitani et al., 2004; Pirnik et al., 2004; Pirnik and Kiss, 2005; Wang et al., 2009).

OXT attenuates stress-induced activation of the hypothalamus-pituitary-adrenal (HPA) axis, thus modulates stress response in rodents (Windle et al., 1997; Neumann, 2002). Stress exposure potentiates OXT secretion into the peripheral circulation (Lang et al., 1983; Kasting, 1988) and within the brain as reflected by increased OXT concentration in the cerebrospinal fluid (Ivanyi et al., 1991). It has also been reported that OXT is released within the hypothalamus in response to shaker (Nishioka et al., 1998) and forced swimming (Wotjak et al., 1998) stress in rat. Study of oncogene expression has demonstrated that restraint stress activates oxytocinergic neurons in PVN and SON (Miyata et al., 1995). OXT administration also attenuates the increase in gene expression of corticotropin-releasing factor (CRH) in PVN in response to acute restraint stress in rats (Windle et al., 2004). On the other hand, repeated experiences with the same stressor may produce habituation or reduction of behavioral responses (Zheng et al., 2010; Yoshimoto et al., 2012).

Fig. 1. Effects of CHRS on social approach in male adult rats.

In contrast to OXT, fewer studies have been carried out to investigate the role of AVP in stress responses. AVP acts as an important modulator of adrenocorticotropic hormone release in response to stress by potentiating the effect of CRH (Antoni, 1993). Acute stress induces rapid and concomitant release of CRH and AVP into the pituitary portal circulation from parvocellular neurons of PVN (Kovacs and Sawchenko, 1996). Immunohistochemical studies have shown that following repeated immobilization stress CRH stores remain unchanged, but there are progressive increases in AVP stores as well as the number of CRH nerve endings containing AVP (de Goeij et al., 1991).

Other studies have shown that exposure to chronic stress increases OXT content in PVN in rat (Zheng et al., 2010; Yoshimoto et al., 2012). Exposure to repeated immobilization also increased oxytocin mRNA levels in the hypothalamus (Zheng et al., 2010; Babygirija et al., 2010). However, relatively few studies have directly examined the repeated restraint stress on social behaviors.

The present studies were therefore designed to investigate the effects of chronic homotypic restraint stress (CHRS) on social behaviors (social approach and anxiety) of male rats. It has been well accepted that the abnormal social behavior and excessive anxious reactions are the core symptoms of mental disorders like ASD and SAD. It is not clear how stress therapy helps to improve the abnormal behavior in the symptoms of such disorders. OXT and/or AVP neurons in hypothalamus have been shown to be involved in mediating stress responses and social behavior. In addition, these neurons have also been suggested to be at least partially responsible for the etiology of autism. We hypothesized that the therapeutic effect of chronic stress is mediated by changes in the function of hypothalamic OXT and/or AVP neurons.

2. Materials and methods

2.1. Animals

Male Sprague-Dawley (SD) rats weighing 220–250 g, aged 65–85 d at the beginning of the experiment were obtained from experimental animal department of Peking University Health Science Center. They were housed in a 12:12 h light/dark cycle (lights on at 07:00 h) with food and water ad lib. The room temperature was maintained at 24 ± 1 °C and relative humidity at 50%. Twenty rats were evenly divided into two groups: the CHRS group and the Control group. Animals were housed 4 to 5 per cage (590 mm × 380 mm × 200 mm). In order to reduce the stress due to the novel environment, animals were individually acclimated for 5 min/two times daily for 2 days on the day before the experiment. Then we performed a baseline behavioral testing. The...
study protocols were approved by the university’s Research Ethics Committee (LA 2013-80) and were in accordance with the NIH guide for experimental animal research.

2.2. Chronic homotypic restricted stress (CHRS) loading

After baseline behavioral testing, for CHRS loading, rats were placed in a specially designed holder as described previously with modifications (Zheng et al., 2009). Their trunks were wrapped in a confining harness for 30 min per session, one session per day for ten consecutive days. The animal was able to move the hind legs and tail but not the trunk. The rats without CHRS were not exposed to restraint stress, and were not removed from their cages.

2.3. Behavioral testing

2.3.1. Social approach test

After 10-day exposure to CHRS, the social approach test was designed according to Nadler et al. (2004) with slight modifications. The apparatus consisted of three plastic boxes (34 cm × 40 cm × 24 cm) namely A, N and B. The three boxes were connected by two corridors (10 cm × 10 cm × 15 cm), and there was an infrared detector at each corridor to record the number of entries into each chamber and the duration of time stayed in each chamber. The procedure for our social test included 2 phases: habituation and testing. Phase I, Habituate rat to all three chambers for 15 min one day before the test. Phase II, Test for sociability. Subject rat was placed in the center box N. In box A, an

Fig. 3. Representative photomicrograph of OXT-positive cells in male adult rats. Immunohistochemistry of OXT in PVN (A & C, Control; B & D, CHRS) and in SON (E & G, Control; F & H, CHRS). Compared to control rats, an increased number of OXT-immunoreactive cells in PVN was observed in CHRS rats (scale bar = 200 μM; 3 V = third ventricle).

Please cite this article as: Li, J., et al., Effects of chronic restraint stress on social behaviors and the number of hypothalamic oxytocin neurons in male rats, Neuropeptides (2016), http://dx.doi.org/10.1016/j.npep.2016.08.011
unfamiliar rat (we used different model rats during the baseline test and post-treatment test) was kept in a small cage; and an empty cage was placed in box B. The time spent by the testing animal in box A was thought to be an indication of the rat’s tendency to participate in social approach. Each test lasted for 15 min. At the end of the test, rats were returned to their home cage and the apparatus was thoroughly cleaned to remove the smell from the previous one. Animals used as strange rats were male with the same age without previous contact with the testing rats.

2.3.2. Light-dark exploration test

After the social approach test, we performed light-dark exploration test. The test apparatus consisted of an enclosed dark box and a bright box with a transparent ceiling (34 cm × 40 cm × 24 cm). A small corridor (10 cm × 10 cm × 15 cm) allowed rats to move freely between boxes. There was also an infrared detector placed at the corridor detecting crossing objects. At the beginning of the test, the testing rat was placed into the light box and the time spent in each box was recorded for 15 min. Cumulative time spent in the dark box was calculated as an indication of anxiety-related behavior. At the end of each test, rats were returned to their home cages and the apparatus were thoroughly cleaned to remove the smell from the previous one.

2.4. Immunohistochemical analysis of OXT- and AVP-containing cells in the PVN and SON

After the behavioral tests, rats were anesthetized with 10% chloral hydrate (300 mg/kg body weight) administered intraperitoneally.

Fig. 4. Representative photomicrograph of AVP-positive cells in male adult rats. Immunohistochemistry of AVP in PVN (K & M, Control; L & N, CHRS) and in SON (O & Q, Control; P&R, CHRS). (Scale bar = 200 μM; 3 V = third ventricle).

Please cite this article as: Li, J., et al., Effects of chronic restraint stress on social behaviors and the number of hypothalamic oxytocin neurons in male rats, Neuropeptides (2016), http://dx.doi.org/10.1016/j.npep.2016.08.011
They were then transcardially perfused with saline solution and buffered 4% paraformaldehyde (pH 7.4) using a peristaltic pump. Brains were removed, post-fixed in the same fixative solution and cryoprotected in 15% and 30% sucrose in phosphate buffered saline (PBS). Serial sections (30 μM each) were collected and stored at −20°C in anti-freezing solution. The immunoreactivity of OXT and AVP was detected by dual ABC (avidin-biotin-peroxidase complex) immunohistochemical technique. The procedures were as follows: Free floating sections were rinsed in 0.01 mol/L PBS (pH 7.2) and then floated in 4% formaldehyde for 10 min, then rinsed in 0.01 mol/L PBS, followed by a preincubation in 0.3% H₂O₂ for 30 min at room temperature to eliminate endogenous peroxidase activity. After rinsing in 0.01 mol/L PBS, the sections were incubated with blocking buffer, containing 10% normal goat serum and 0.3% Triton X-100 in 0.01 mol/L PBS for 30 min in a thermostat at 37 °C, followed by incubation with rabbit anti-OXT antibody (Abcam, USA, 1:2000 dilution in 0.01 mol/L PBS containing 1% normal goat serum and 0.3% TritonX-100) for 2 h at 37 °C and then −4 °C for 48 h. The sections were then washed three times (15 min each) in PBS prior to incubation for 30 min at 37 °C with the secondary biotinylated goat anti-rabbit IgG (Vectastain, USA, 1:200 dilution). The slices were then rinsed three times with PBS followed by incubation with streptavidin-biotin-horseradish peroxidase complex (Vectastain, USA, diluted 1:200) for 45 min at 37 °C. Immunoreactivity was visualized by incubating each slice in a medium containing 0.05 M Tris-HCl (pH 7.6) with 0.5 mg/mL diaminobenzidine (DAB) and 0.03% H₂O₂ for 10 min. This method produces a brown nuclear reaction product. Lastly, the free-floating sections were air-dried overnight, dehydrated in a series of alcohols, cleared in xylene and placed under a coverslip with gum.

2.5. Cell counting and statistical analysis

The immunoreactive cells were counted and photographed under an Olympus microscope with a Canon camera. OXT and AVP were identified as brown immunoreactive products deposited in the nuclei in PVN and SON. The total number of OXT- and AVP-immunoreactive cells was counted bilaterally in the PVN and SON on the sections between −0.8 and −2.1 mm from the Bregma. The selected section showed the most immunoreactive products. The identification of neurons in the PVN and SON of hypothalamus was performed, as previously reported (Sawchenko and Swanson, 1982).

2.6. Statistics

The statistical analysis was performed with SPSS 13.0 software. The results were expressed as the mean ± SEM and the differences between unpaired variables were determined by t-test. P value < 0.05 was considered statistically significant.

3. Results

3.1. Social approach test

The results of three-chambered sociability test were shown in Fig. 1. There was no difference between groups in social behavior during the baseline period (Fig. 1a). Fig. 1b illustrated the change of time percent spent in chamber A (with stranger rat). A significant difference was observed between groups on the time spent exploring the stranger rat (9.286 ± 3.662 for the CHRS and −1.647 ± 3.208 for the Control group). Fig. 1b showed that CHRS rats spent more time exploring the stranger rat than control rats (P < 0.05).

CHRS increased exploratory behavior in the three-chambered social approach task. (a) The baseline of percent time spent in chamber A with strange rat between both groups, (b) Chronic stress increased social recognition in male rats. Data represent mean ± SEM (n = 10). *P = 0.038, an unpaired t-test was used to compare changes in social approach behaviors (con vs stressed) in Panel b.

3.2. Light-dark exploration test

Fig. 2 showed the percentage of time the rats spent in the dark box which reflects the anxiety level. There was a significant decrease in post-treatment phase in CHRS rats (−12.02 ± 2.372) compared to
the Control group (0.383 ± 5.131) on percentage of time spent in the dark box (P < 0.05, Fig. 2b).

3.3. Immunohistochemistry analysis for OXT- and AVP-positive neurons in PVN and SON

In response to chronic homotypic restraint stress, the number of OXT-immunoreactive cells in PVN was significantly increased from 94.75 ± 8.33 to 141.8 ± 17.05 (P < 0.05, Fig. 5i). There was no significant change in OXT-immunoreactive cells in SON following CHRS (Fig. 5j). Nor was there any significant difference between the groups in the number of AVP-immunoreactive cells in PVN (Fig. 5s) or SON (Fig. 5t).

Representative photomicrographs of OXT and AVP-positive neurons from PVN and SON nuclei were showed in Figs. 3 and 4, respectively.

4. Discussion

The results showed that chronically stressed rats spent significantly more time exploring the strange rat in the three-chambered test, and significantly less time in the dark environment following CHRS versus baseline. It suggests that 10-day exposure to chronic homotypic restraint stress may increase social approach and decrease anxiety. Furthermore, the number of OXT-immunoreactive cells in the PVN, but not SON, was found to be increased after 10 days of CHRS exposure, whereas AVP-immunoreactive cells in PVN or SON was not affected by CHRS. These data suggest that OXT may play an important role in PVN in mediating the behavioral changes following CHRS.

Previous study (Sandi and Haller, 2015) showed that there has been a vast increase in research on how various forms of stressors administered in different phases of the lifespan affect individuals’ interest in and reactions towards conspecifics—including social motivation, social recognition and aggression. Animal studies have shown that the effects of stress on social behaviors cover a range of neurodevelopmental periods. Their long-term effects on the HPA axis are different. Prenatal stress may increase social approach and decrease anxiety. Animal studies have shown that the effects of stress on social behaviors are associated with OXT/AVP system activation. Our immunohistochemistry results showed obvious alterations observed in the CHRS group were associated with OXT/AVP system activation. Our immunohistochemistry results showed obvious alterations observed in the CHRS group were associated with OXT/AVP system activation.

Given the importance of OXT/AVP in the regulation of social behaviors and stress responses, we assumed that these behavioral alterations observed in the CHRS group were associated with OXT/AVP system activation. Our immunohistochemistry results showed obvious morphological changes in the number of OXT positive neurons in PVN. More work is needed to clarify whether the increased expression of OXT in PVN is related to reduced release or enhanced synthesis of this neuropeptide.

There are several limitations ought to be mentioned. We used normal adult rats in our research, they did not have social deficits and have few relevance with human children. In order to verify the relation between chronic restraint stress and different kinds of neural disorders, we consider to use rat models of autism or anxiety in the next work. Additionally, the Control group has not undergone any handling or other disturbances. Effects such as cohort removal (sequential removal of rats from the cage) may act as a rapid and potent stressor for the mother followed by handling during the neonatal period may induce a reduction in affiliative social behavior among adult males (Todeschin et al., 2009). All these factors may cause some confounding effect on the interpretation of the results.

5. Conclusions

In summary, chronic homotypic restraint stress increased social approach and decreased anxiety in male adult rats. Furthermore, the number of OXT-immunoreactive cells in PVN was found to be increased concomitantly following CHRS group. Our study may help to better understand that moderate and controllable stress may be helpful in ameliorating mental disorders such as autism, social anxiety disorder.

Please cite this article as: Li, J., et al., Effects of chronic restraint stress on social behaviors and the number of hypothalamic oxytocin neurons in male rats, Neuropeptides (2016), http://dx.doi.org/10.1016/j.npep.2016.08.011
Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

This work was supported by the research special fund for public welfare, Department of Health of China (201302002) to Jisheng Han.

References


