Research Paper

Chronic stress increases pain sensitivity via activation of the rACC–BLA pathway in rats

Ling-Yu Liua, Rui-Ling Zhangb, Lin Chena, Hong-Yan Zhaoa, Jie Caiabc, Jia-Kang Wange, Da-Qing Guoe, Yan-Jun Cuid, Guo-Gang Xingab,c,⁎

⁎ Corresponding authors at: Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China (G-G Xing); Department of Internal Medicine, Peking University Hospital, Beijing 100871, China (Y-J Cui).

E-mail addresses: cyj@pku.edu.cn (Y.-J. Cui), ggxing@bjmu.edu.cn (G.-G. Xing).

ARTICLE INFO

Keywords:
Chronic forced swim stress
Stress-induced hyperalgesia
Rostal anterior cingulate cortex
Amygdala
Field potential power
Local field potential
Rat

ABSTRACT

Exposure to chronic stress can produce maladaptive neurobiological changes in pathways associated with pain processing, which may cause stress–induced hyperalgesia (SIH). However, the underlying mechanisms still remain largely unknown. In previous studies, we have reported that the amygdala is involved in chronic forced swim (FS) stress–induced depressive-like behaviors and the exacerbation of neuropathic pain in rats, of which, the basolateral amygdala (BLA) and the central nucleus of the amygdala (CeA) are shown to play important roles in the integration of affective and sensory information including nociception. Here, using in vivo multichannel recording from rostral anterior cingulate cortex (rACC) and BLA, we found that chronic FS stress (CFSS) could increase the pain sensitivity of rats in response to low intensity noxious stimuli (LIS) and high intensity noxious stimuli (HNS) imposed upon the hindpaw, validating the occurrence of SIH in stressed rats. Moreover, we discovered that CFSS not only induced an increased activity of rACC neuronal population but also produced an augmented field potential power (FPP) of rACC local field potential (LFP), especially in low frequency theta band as well as in high frequency low gamma band ranges, both at the baseline state and under LIS and HNS conditions. In addition, by using a cross-correlation method and a partial directed coherence (PDC) algorithm to analyze the LFP oscillating activity in rACC and BLA, we demonstrated that CFSS could substantially promote the synchronization between rACC and BLA regions, and also enhanced the neural information flow from rACC to BLA. We conclude that exposure of chronic FS stress to rats could result in an increased activity of rACC neuronal population and promote the functional connectivity and the synchronization between rACC and BLA regions, and also enhance the pain–related neural information flow from rACC to BLA, which likely underlie the pathogenesis of SIH.

1. Introduction

Chronic stress–induced depression disorder can increase the suffering of patients and their family members (Yankelevitch-Yahav et al., 2015), which is a very important health issue. Stress–induced hyperalgesia (SIH) (Jennings et al., 2014), as well as the comorbidity of pain with chronic stress–related depression disorder, represent a series of significant clinical challenges in modern society (Gerrits et al., 2014; Li, 2015). Depressive patients often experience greater severe pain (Akechi et al., 2012). Besides, anxiety and depression-like behaviors have also been observed to be significantly increased in rats with neuropathic pain (Goncalves et al., 2008). Many patients with chronic pain also
seem to have clear symptoms relating to anxiety and depression. In clinical practice, chronic pain is also associated with negative emotional reactions and cognitive impairment (Jensen et al., 2012). Previously, we have reported that the amygdala is involved in chronic forced swim (FS) stress–induced depressive-like behaviors and the exacerbation of neuropathic pain in rats (Chen et al., 2018a; Li et al., 2017), of which, the basolateral amygdala (BLA) and the central nucleus of the amygdala (CeA) are shown to play important roles in the integration of affective and sensory information including nociception (Li et al., 2017; Padival et al., 2013).

Chronic stress causes morphological and functional changes in many brain regions. Multiple cortical and subcortical areas are found to play crucial roles in the modulation of chronic stress–relevant negative emotion, depression and chronic pain. The anterior cingulate cortex (ACC) is a critical hub for nociceptive perception and pain–related anxiety (Guo et al., 2018), which can be divided into a cognitive region (dorsal ACC, dACC) and an affective region (rostral ACC, rACC) (Shinozaki et al., 2016). The rACC closely connects with the amygdala (Matyas et al., 2014), periaqueductal gray (PAG), hypothalamus, hippocampus, and orbitofrontal cortex, thereby participating in autonomic nervous activity, endocrine activity, the motivation information evaluation, and the emotional responses. Functionally, the amygdala receives both multi-sensory information from the superior cortical region via the lateral/basolateral amygdala (LA/BLA) and the direct projections of nociceptive information from the parabrachial nuclei (PB) (Bianchi et al., 1998; Strobel et al., 2014). Highly integrated stress-affective–related information is then transmitted to the CeA, an output nucleus for the major functions of the amygdala, to modulate the pain–related behaviors. The BLA has important roles in the modulation of neuropathic pain, including the neural circuit that processes the affective-motivational component of pain (Seno et al., 2018). Also, the BLA is highly associated with a variety of brain functions and diseases, such as cognitive and emotional functions (Sharp, 2017), and the hyperexcitability of BLA neurons is involved in the pathogenesis of SIH. Direct neuronal projections from ACC to BLA play a critical role in modulation emotional functions such as fear learning (Allsop et al., 2018; Jiang et al., 2016). Therefore, chronic forced swim (FS) stress not only leads to the hyperactivation of rACC neurons (Clauss et al., 2014), but also increases the interaction between rACC and amygdala (Yoshimura et al., 2010). Theoretically, the alterations of rACC neurons activity may consequently impact the activity of BLA neurons in SIH state.

Based on the above evidence, we hypothesized that the chronic stress–induced augmentation of pain sensitivity may depend upon the activation of the rACC–BLA pathway, that is, the increased excitability of rACC neurons and the enhanced information flow from rACC to BLA. In this study, by using an in vivo multiple-channel recording technique in free-moving rats, we investigated whether exposure of CFSS to rats would exacerbate the pain sensitivity in response to the innocuous and noxious stimuli imposed to the hindpaw. Furthermore, we examined whether the increased activity of rACC neuronal population and the power spectra activities of rACC local field potential (LFP), as well as the enhanced pain–related neural information flow from rACC to BLA, would underlie the pathogenesis of SIH.

2. Materials and methods

2.1. Animals

Male Sprague-Dawley rats, weighing 300–350 g at the beginning of the experiment, were provided by the Department of Experimental Animals Sciences, Peking University Health Science Center. The rats were housed in separated cages with free access to food and water, and maintained in a temperature (20–22 °C), humidity (50–55%) and illumination (12: 12-h light: dark cycle) controlled vivarium. All procedures were approved by the Animal Care and Use Committee of Peking University.

2.2. Chronic forced swim stress (CFSS) procedure

In this study, chronic forced swim (FS) was chosen as a stressor, and carried out according to the procedure as previously described (Li et al., 2017; Shishkina et al., 2015). Briefly, the rats were placed in a glass cylinder (45 cm high, 20 cm in diameter) filled with ice water (0 ± 2 °C) up to a height of 30 cm. The FS procedure was conducted to rats individually once per day in 15-min sessions, continued for 7 consecutive days. According to the methods described elsewhere (Suarez-Roca et al., 2008), control rats were subjected to a sham swimming (sham FS) sessions by allowing them to wade in the cylinder that contained only 2–4 cm of warm water at 24–26 °C. Here we used sham FS animals rather than naïve animals as control for the reason to exclude the factor of habituation for rats to the water (Bogdanova et al., 2013). Rats were allowed to dry in a warm environment (30–33 °C) after swimming. The water was changed and the container was thoroughly cleaned for each rat. Electrophysiological activities and behavioral tests were recorded respectively before and after the FS procedure.

2.3. In vivo multi-channel recording

2.3.1. Surgery

Prior to the implantation of microelectrode array, initial anaesthesia was administered by pentobarbital sodium injection (50 mg/kg, i.p.). Supplementary doses (1/3 of the original dose) of pentobarbital sodium were given to maintain a proper anesthetic depth during surgery. Rats were mounted on a stereotaxic apparatus (Reward Life Science Technology Co. Ltd., Shenzhen), and an array of eight nickel chromium alloy wire PEG 2000-insulated microwires (14 μm in diameter, arranged in a 4 × 2 configuration, 250 μm spacing between each microwire, STABLOHM 675, California Fine Wire Company, USA) were slowly lowered into the right rACC (0 to 2.0 mm rostral to the bregma, 0 to 1.2 mm lateral from midline, and depth of 1.5 mm) and the right BLA (1.6 to 3.4 mm posterior to the bregma, 4.4 to 5.5 mm lateral from midline, and 6.8 mm ventral relative to the dura), according to the Rats Atlas of Paxinos and Watson (Paxinos and Watson, 2005). Six stainless steel screws were driven into the skull to serve as anchors for cementing the microwires in place after implantation. Rats were received penicillin injection (16,000 IU, i.m.) before surgery to prevent infection, and after surgery, they were allowed to recover for one week before recording sessions commenced.

2.3.2. Electrophysiological recording

Rats were placed in a transparent plastic chamber (40 × 40 × 30 cm, with a 2 × 8 mm stainless grid plate) in a quiet room at 22 ± 1 °C and allowed to move freely throughout the recording period. Electrophysiological signals were recorded after the animals adapted to the experimental environment. Data were collected at baseline (before stress) and on day 1 after a 7 consecutive-days stress (after stress). Multi-unit neuronal activity and broadband local field potential (LFP) signals were recorded simultaneously from the rACC and BLA with a Plexon multi-channel recording system (Plexon, Hong Kong). Neuronal spike signals were collected through the implanted microwire assemblies that were connected to a preamplifier via a head stage plug and a light-weight cable, and the ground wire was used as a reference. The outputs of the preamplifier were filtered (0.5 and 5 kHz, 6 dB cut-off) and sent to a multichannel spike-sorting device (Plexon, Hong Kong) for online signal processing. Spike train activity was analyzed by the software of NeuroExplorer (Plexon, Hong Kong). Waveform capture and frequency distribution histogram were used to verify the online classification of a single unit. Different waveforms were individually
distinguished by setting multiple time-voltage windows using Offline-
Sorter software (Plexon, Hong Kong). The time stamps of these wave-
forms were then stored on a personal computer for off-line analysis. In
our present study, the spontaneous- and the laser stimul-evoked ac-
tivities of rACC and BLA neurons, induced by the low intensity in-
oxious stimuli (LIS) and the high intensity noxious stimuli (HNS) to
rats, were recorded before and after stress exposure, respectively. The
evoked activities of rACC and BLA neurons were sampled and analyzed
during a time-frame from the 2s before laser stimuli to the 2s after
laser stimuli. Each recording session contained 10 LIS trials and 10 HNS
trials at random, with no less than 120 s inter-stimulus interval to avoid
hyperalgesia.

Meanwhile, LFP signals were recorded from the right rACC and BLA
by microwire arrays with a multi-channel data acquisition system
(Plexon, Hong Kong). The LFP signals were transmitted from the head-
set assemblies to the preamplifier via a light-weight cable. LFPs
were collected at a sampling frequency of 10 kHz, amplified (300 ×),
and band-pass filtered (0.3–500 Hz). LFP signals were filtered into five
frequency bands: theta (4–8 Hz), alpha (9–12 Hz), beta (13–30 Hz), low
gamma (31–70 Hz), and high gamma (71–100 Hz), in which the theta,
alpha and beta bands belong to the low frequency band (4–30 Hz),
while the low gamma and high gamma bands belong to the high fre-
quency band (31–100 Hz). These five frequency bands, as well as the
broadband (4–100 Hz) LFP signals, were then analyzed via a Hilbert
transform.

2.3.3. Data analysis
The neuronal firing rate was quantified for each neuron using
analysis program NeuroExplorer (Plexon, Hong Kong) to construct rate
histogram with a time-frame from the beginning to 5 min after stress in
different groups. The bin sizes were 1 s and 50 milliseconds for the
computation of baseline and LIS/HNS-evoked firing histogram, re-
spectively. Bin counts for each trial were calculated using the analysis
program NeuroExplorer (Plexon, Hong Kong) and the results were ex-
ported to Matlab (The MathWorks, Inc.) in spreadsheet form. The firing
rates for all neurons were normalized and arranged into a spreadsheet
for further statistical analysis. Field potential power (FPP) was ana-
alyzed with the NeuroExplorer (Plexon, Hong Kong) and Matlab toolbox
Chronux (http://chronux.org). Local field potential (LFP) data were
sampled at 1 kHz and analyses were performed separately for each 400-
s epoch of recording to baseline LFP, or for each 4-s (from the 2 s before
laser stimuli to the 2 s after laser stimuli) epoch of recording to LIS/
HNS-evoked LFP. Then the time-varying power spectra was calculated
by fast Fourier transformation (FFT). Power spectral analysis was per-
fomed to calculate FPP.

2.4. Behavioral test
In all experiments, electrophysiological signals and the video re-
cording for the animals’ behaviors were simultaneously recorded.
Cineplex Studio software was used to synchronize videos to record the
behaviors of rats. In our experiments, the spontaneous- and the laser
stimuli-evoked activity of rACC and BLA neurons, induced by the low
intensity innocuous stimuli (LIS) and the high intensity noxious stimuli
(HNS) to rats, were recorded before and after stress exposure, respec-
tively. The laser beam (10.6 mm in wavelength, 2.5 mm in diameter
and 10 ms in pulse width), that imposed on the left hindpaw of the rat
through the multi-row holes at the bottom of the plastic chamber, was
delivered by a CO2 laser therapeutic machine (DIMEI-300, Changchun
Optics Medical Apparatus Co. Ltd., China). Nociceptive behaviors were
identified by the immediate paw withdrawal response to the imposed
laser stimuli. The power of HNS was set as 120% paw withdrawal
threshold (approximately 8 to 12 milliwatts), while the power of LIS
was set as 80% paw withdrawal threshold (usually below 4 milliwatts).
Nociceptive behavioral test was simultaneously recorded with each
electrophysiological recording session.

2.5. Histology
After the termination of the experiment, rats were deeply anesthe-
tized with pentobarbital sodium and the tip positions of the electrodes
were identified by a 2 mA, 10 s DC current (anode current) through the
electrodes to produce thermally lesion of the near area tissue. The an-
imals were then sacrificed and perfused with 0.9% saline followed by
4% paraformaldehyde. After fixing in paraformaldehyde at 4°C over-
night, the brains were transferred to a 20% sucrose solution in saline for
cryoprotection. Coronal sections of 30 μm were cut on a microtome,
mounted on charged slides, and stained with neutral red dye for 10–15
min. Recording sites were determined under a light microscope
(supplementary data, Fig. S1). Data of those sites deflections from the
target area were excluded from analysis.

2.6. Statistical analysis
Data statistical analyses and figure plotting were performed by
software of Matlab 2015a (The MathWorks, Inc.) and GraphPad Prism
7.0 (GraphPad Software, Inc., La Jolla, USA). All data were expressed as
mean ± standard error of the mean. A two-tailed unpaired t-test was
used for the comparison of the mean values between two groups. Two-
way analysis of variance (ANOVA) followed by Bonferroni or Tukey
post-hoc test was used for multiple comparison. Differences with
P < 0.05 were considered statistically significant.

3. Results

3.1. Chronic forced swim stress increases the pain sensitivity of rats in
response to low intensity innocuous stimuli (LIS) and high intensity noxious
stimuli (HNS)
In order to explore the effects of chronic forced swim stress (CFSS)
on nociceptive behaviors in rats, we examined the pain sensitivity in-
duced by innocuous- and noxious-laser stimuli imposed upon the
hindpaw, respectively. The experimental procedure is shown in Fig. 1A.
The behavioral results revealed that in CFSS-treated rats, the paw
withdrawal ratio of rats was increased significantly in response to both
low intensity innocuous stimuli (LIS) (32.5 ± 4.8% after CFSS vs.
5.0 ± 5.0% before CFSS, F_{1,12} = 3.56, P = 0.0065, Fig. 1B) and high
intensity noxious stimuli (HNS) (97.5 ± 2.5% after CFSS vs.
50.0 ± 15.8% before CFSS, F_{1,14} = 0.31, P = 0.0365, Fig. 1C) (two-
way ANOVA, n = 4–5 rats per group). And also, the paw withdrawal
ratio of rats to the LIS was substantially increased (32.5 ± 4.8% after
CFSS vs. 12.5 ± 7.5% after sham CFSS, F_{1,12} = 3.56, P = 0.0411,
Fig. 1B) in CFSS-treated rats compared with the sham CFSS-treated rats
(two-way ANOVA, n = 4 rats per group). However, in sham CFSS-
treated rats, no significant alteration was observed on the paw with-
drawal ratio either in response to LIS (12.5 ± 7.5% after sham stress
vs. 5.0 ± 2.9% before sham stress, F_{1,12} = 3.56, P = 0.6741) or to HNS
(87.5 ± 6.3% after sham stress vs. 54.0 ± 14.7% before sham stress,
F_{1,14} = 0.31, P = 0.1554) (two-way ANOVA, n = 4–5 rats per group).
These results indicated that exposure of CFSS to rats could induced an
increased pain sensitivity, that is, stress–induced hyperalgesia (SIH) as
observed in patients.

3.2. Chronic forced swim stress increases the baseline activity of rACC
neurons in rats
Long-term negative event exposure, such as CFSS, can change the
excitability of cortical neurons. In order to determine the effect of CFSS
on the baseline activity of rACC neurons, we first examined the spon-
taneous activity of rACC neurons in rats exposed to CFSS or sham CFSS
using in vivo multichannel recording technique. A total of 132 rACC
neurons were recorded, including 73 neurons in 6 CFSS-treated rats,
and 59 neurons in 4 sham CFSS-treated rats. Representative baseline
firing activity of rACC neurons in rats exposed to CFSS or sham CFSS are shown in Fig. 2A to D. The statistical results disclosed that the mean spontaneous firing rate of rACC neurons (during a 400-s time-window of sampling) was significantly increased in rats after exposure of CFSS (in spikes/s, 5.45 ± 0.36 after CFSS vs. 3.52 ± 0.22 before CFSS, \(F_{1,247} = 17.51, P < 0.0001\), two-way ANOVA, Fig. 2C, D and E). In contrast, no significant alteration was observed on the mean spontaneous firing rate of rACC neurons in rats subjected to sham CFSS (in spikes/s, 3.10 ± 0.16 after sham CFSS vs. 3.42 ± 0.25 before sham CFSS, \(F_{1,247} = 17.51, P = 0.8542\), two-way ANOVA, Fig. 2A, B and E). Moreover, the mean spontaneous firing rate of rACC neurons also was prominently increased in CFSS-treated rats compared with the sham CFSS-treated rats after exposure of stress (in spikes/s, 5.45 ± 0.36 CFSS vs. 3.10 ± 0.16 sham CFSS, \(F_{1,247} = 17.51, P < 0.0001\), two-way ANOVA, Fig. 2E). In addition, after exposure of stress, the normalized firing rate of rACC neurons relative to the mean baseline activity (i.e. pre-stress) was 154.6 ± 10.2% of pre-stress in sham CFSS-treated rats and 90.7 ± 4.7% of pre-stress in sham CFSS-treated rats, respectively (\(t_{117} = 5.21, P < 0.0001\), unpaired two-tailed t-test, Fig. 2F). These data suggested that exposure of CFSS to rats could enhance the baseline activity of rACC neurons, that is, induced a sensitization of rACC neurons.

3.3. Chronic forced swim stress increases the rACC neuron activity induced by low intensity innoxious stimuli (LIS) and high intensity noxious stimuli (HNS) to rats

Next, we examined the LIS- and HNS-evoked firing rate of rACC neurons before and after exposure of stress to rats. The evoked firing rate of rACC neurons was sampled and analyzed during a time-window from the 2s before laser stimuli to the 2s after laser stimuli. Representative LIS- and HNS-evoked firing activity of rACC neurons in rats exposed to CFSS or sham CFSS are shown in Fig. 3A and D, respectively. The statistical results uncovered that in CFSS-treated rats, both LIS and HNS induced a substantially increase in the laser-evoked firing rate of rACC neurons after stress exposure. For example, the LIS-evoked firing rate (in spikes/s) of rACC neurons was increased from 4.26 ± 0.32 before CFSS to 10.07 ± 0.46 after CFSS (\(F_{1,161} = 61.64, P < 0.0001\), two-way ANOVA, Fig. 3B), and the HNS-evoked firing rate was increased from 8.58 ± 0.39 before CFSS to 22.86 ± 0.51 after CFSS (\(F_{1,166} = 239.6, P < 0.0001\), two-way ANOVA, Fig. 3E), respectively. However, as that in sham CFSS-treated rats, the laser-evoked firing rate (in spikes/s) of rACC neurons was not significantly altered either after application of LIS (5.00 ± 0.42 before sham CFSS vs. 4.51 ± 0.31 after sham CFSS, \(F_{1,161} = 61.64, P = 0.8545\), two-way ANOVA, Fig. 3B) or after application of HNS (7.21 ± 0.39 before sham CFSS vs. 7.78 ± 0.44 after sham CFSS, \(F_{1,166} = 239.6, P = 0.7803\),
two-way ANOVA, Fig. 3E). Additionally, after exposure of stress, both the LIS-evoked firing rate (in spikes/s, \(10.07 \pm 0.46\) CFSS vs. \(4.51 \pm 0.31\) sham CFSS, \(F_{1,161} = 61.64, P < 0.0001\)) and the HNS-evoked firing rate (in spikes/s, \(22.86 \pm 0.51\) CFSS vs. \(7.78 \pm 0.44\) sham CFSS, \(F_{1,166} = 239.6, P < 0.0001\)) of rACC neurons were significantly increased in CFSS-treated rats compared with the sham CFSS-treated rats (two-way ANOVA, Fig. 3B and E). Likewise, after exposure of stress, the normalized firing rate of rACC neurons relative to the mean laser-evoked activity of pre-stress was significantly increased in CFSS-treated rats compared with the sham CFSS-treated rats, both by LIS (236.6 \(\pm 10.8\)% of pre-stress in CFSS-treated rats vs. \(90.1 \pm 6.3\)% of pre-sham stress in sham CFSS-treated rats, \(t_{77} = 10.41, P < 0.0001\) and by HNS (266.5 \(\pm 6.0\)% of pre-stress in CFSS-treated rats vs. \(77.5 \pm 6.5\)% of pre-sham stress in sham CFSS-treated rats, \(t_{80} = 21.21, P < 0.0001\)) to rats (unpaired two-tailed t-test, Fig. 3C and F). These findings indicated that exposure of CFSS to rats could also enhance the laser-evoked activity of rACC neurons either by LIS or HNS, thereby validating our understanding that chronic stress could induce a sensitization of rACC neurons in rats.

3.4. Chronic forced swim stress enhances the baseline field potential power of rACC local field potential in rats

Furthermore, we tested whether chronic stress would change the
A. LIS-evoked firing rate of rACC neurons

Before sham CFSS

After sham CFSS

Before CFSS

After CFSS

B. Mean firing rate of ACC neurons evoked by LIS (spikes/sec)

Before stress

After stress

Sham CFSS

CFSS

C. Firing rate of post-stressed neurons (normalized to pre-stress, %)

Before stress

After stress

Sham CFSS

CFSS

D. HNS-evoked firing rate of rACC neurons

Before sham CFSS

After sham CFSS

Before CFSS

After CFSS

E. Mean firing rate of ACC neurons evoked by HNS (spikes/sec)

Before stress

After stress

Sham CFSS

CFSS

F. Firing rate of post-stressed neurons (normalized to pre-stress, %)

Before stress

After stress

Sham CFSS

CFSS

(caption on next page)
baseline field potential power (FPP) of rACC local field potential (LFP) in rats. In this study, LFP signals were filtered into five frequency bands: theta (4–8 Hz), alpha (9–12 Hz), beta (13–30 Hz), low gamma (31–70 Hz), and high gamma bands (71–100 Hz), in which the theta, alpha and beta bands belong to the low frequency band (4–30 Hz), while the low gamma and high gamma bands belong to the high frequency band (31–100 Hz). As analyzed for the broadband (4–100 Hz) frequency range LFP, we found a significant increase in filtered potential power (FPP) of rACC LFP after CFSS, in which the main alteration was displayed in low frequency range LFP (Fig. 4). Here, Fig. 4A shows an example of raw LFP waveform and the grand average time-frequency distribution of rACC FPP in CFSS- and sham CFSS-treated rats, before and after stress. Fig. 4B and C show a representative FPP of rACC LFP and the averaged FPP in CFSS- and sham CFSS-treated rats, before and after stress, in which we found an increased FPP in the low frequency band (4–30 Hz) LFP in rats after CFSS compared with the other three control groups (before CFSS, before and after sham CFSS). As normalized to the pre-stress, we found that the normalized FPP of post-stress was also augmented in a broadband (4–100 Hz) frequency range LFP in CFSS-treated rats compared with sham CFSS-treated rats (Fig. 4D). The FPP histogram also revealed that as compared with before CFSS or after sham CFSS, the FPP of rACC LFP (in μV²/Hz) was significantly increased both in low frequency band (4–30 Hz) (0.014 ± 0.003 post-CFSS vs. 0.6 × 10⁻⁴ ± 0.3 × 10⁻⁵ pre-CFSS vs. 0.8 × 10⁻⁴ ± 0.2 × 10⁻⁴ post-sham CFSS, P < 0.0001) and in broadband (4–100 Hz) frequency range (0.005 ± 0.001 post-CFSS vs. 0.2 × 10⁻⁴ ± 0.1 × 10⁻⁴ pre-CFSS vs. 0.3 × 10⁻⁴ ± 0.47 × 10⁻⁵ post-sham CFSS, P = 0.0172 vs. pre-CFSS, P = 0.0399 vs. post-sham CFSS) after exposure of CFSS to rats (F₆,₄₆ = 7.205, two-way ANOVA, Fig. 4E).

Similarly, as analyzed for the low frequency band (4–30 Hz) FPP of rACC LFP, we also found a prominent increase in rACC FPP after CFSS (Fig. 4F to J), in which the Fig. 4F shows a grand averaged time-frequency distribution of rACC FPP in the low frequency band (4–30 Hz) LFP in CFSS- and sham CFSS-treated rats, before and after stress; Fig. 4G and H show a representative FPP of rACC LFP and the averaged FPP in the four groups, while Fig. 4I shows the normalized FPP of post-stress relative to pre-stress in CFSS- and sham CFSS groups. The FPP histogram revealed that compared with pre-CFSS or post-sham CFSS, the FPP of rACC LFP (in μV²/Hz) was significantly increased in low frequency (0.001 ± 0.3 × 10⁻³ post-CFSS vs. 0.9 × 10⁻⁵ ± 0.1 × 10⁻⁴ pre-CFSS vs. 0.9 × 10⁻⁵ ± 0.95 × 10⁻⁶ post-sham CFSS, P < 0.0001) but not in high gamma frequency band (0.4 × 10⁻³ ± 0.1 × 10⁻³ post-CFSS vs. 0.4 × 10⁻⁵ ± 0.46 × 10⁻⁶ pre-CFSS vs. 0.5 × 10⁻⁵ ± 0.43 × 10⁻⁶ post-sham CFSS, P = 0.0947 vs. pre-CFSS; P = 0.1587 vs. post-sham CFSS) after CFSS (F₆,₃₂ = 7.056, two-way ANOVA, Fig. 4O).

These data suggested that exposure of CFSS to rats could increase the baseline FPP of rACC LFP, especially in low frequency theta and alpha bands as well as in high frequency low gamma band ranges.

3.5. Chronic forced swim stress enhances the FPP of rACC LFP induced by low intensity innoxious stimuli (LIS) and high intensity noxious stimuli (HNS) to rats

Apart from the baseline FPP of rACC LFP, we found that exposure of CFSS to rats could also enhance the FPP of rACC LFP induced by LIS and HNS to rats. Fig. 5 depicts the LIS-induced FPP of rACC LFP in CFSS- and sham CFSS-treated rats, in which the Fig. 5A shows an example of raw LFP waveform and the grand averaged time-frequency distribution of rACC FPP in CFSS- and sham CFSS-treated rats, before and after stress; Fig. 5B and C show a representative FPP of rACC LFP and the averaged FPP in the four groups, while Fig. 5D shows the normalized FPP of post-stress relative to pre-stress in CFSS- and sham CFSS groups. Likewise, the normalized FPP of post-stress relative to pre-stress was mainly increased in the low frequency range LFP in CFSS-treated rats compared with sham CFSS-treated rats (Fig. 5D). The FPP histogram also revealed that the FPP of rACC LFP (in μV²/Hz) was significantly increased in the low frequency range (0.6 × 10⁻³ ± 0.3 × 10⁻³ post-CFSS vs. 0.1 × 10⁻³ ± 0.4 × 10⁻⁴ pre-CFSS vs. 0.1 × 10⁻³ ± 0.4 × 10⁻⁴ post-sham CFSS, P = 0.0153 vs. pre-CFSS; P = 0.0318 vs. post-sham CFSS) after CFSS as compared with pre-CFSS or post-sham CFSS (two-way ANOVA, Fig. 5E).

As further analyzed for the low frequency band (4–30 Hz) FPP of rACC LFP, we also found a remarkable increase in rACC FPP after CFSS (Fig. 5F to I), in which the Fig. 5F and G show a representative FPP of rACC LFP and the averaged FPP in the four groups, while Fig. 5H shows the normalized FPP of post-stress relative to pre-stress in CFSS and sham CFSS groups. The FPP histogram disclosed that compared with...
pre-CFSS or post-sham CFSS, the FPP of rACC LFP (in μV²/Hz) was significantly increased in theta frequency band (0.002 ± 0.9 × 10⁻³ post-CFSS vs. 0.5 × 10⁻³ ± 0.2 × 10⁻³ pre-CFSS vs. 0.6 × 10⁻³ ± 0.2 × 10⁻³ post-sham CFSS, F₁,₃₆ = 0.6379, P = 0.0296 vs. pre-CFSS; P = 0.0492 vs. post-sham CFSS) after CFSS (two-way ANOVA, Fig. 5I).

However, as analyzed for the high frequency band (31–100 Hz) FPP of rACC LFP, no significant difference was observed on the FPP between CFSS- and sham CFSS-treated rats (Fig. 5J to M). Fig. 5J and K show a representative FPP of rACC LFP and the averaged FPP in the four groups, while Fig. 5L shows the normalized FPP of post-stress relative to pre-stress in CFSS and sham CFSS groups. As compared with pre-CFSS or post-sham CFSS, the FPP of rACC LFP (in μV²/Hz) had no significant alteration either in low gamma (P = 0.7676 vs. pre-CFSS; P = 0.1122 vs. post-sham CFSS) or in high gamma frequency band (P = 0.9955 vs. pre-CFSS; P = 0.9746 vs. post-sham CFSS) after exposure of CFSS to rats (F₃,₂₄ = 1.049, two-way ANOVA, Fig. 5M).

With respect to the HNS-induced FPP of rACC LFP, Fig. 6A shows an example of raw LFP waveform and the grand averaged time-frequency distribution of rACC FPP in CFSS- and sham CFSS-treated rats, before and after stress; Fig. 6B and C show a representative of rACC LFP and the averaged FPP in CFSS- and sham CFSS-treated rats, before and after stress, in which we also observed a prominent increase mainly in the low frequency (4–30 Hz) LFP in rats after CFSS compared with the other three control groups (before CFSS, before and after sham CFSS). However, the normalized FPP of post-stress relative to pre-stress was increased in a broadband (4–100 Hz) frequency range LFP in CFSS-treated rats compared with sham CFSS-treated rats (Fig. 6D). The FPP histogram showed that compared with pre-CFSS or post-sham CFSS, the FPP of rACC LFP (in μV²/Hz) was significantly increased in low gamma (0.001 ± 0.4 × 10⁻³ post-CFSS vs. 0.2 × 10⁻³ ± 0.2 × 10⁻³ pre-CFSS vs. 0.2 × 10⁻³ ± 0.2 × 10⁻³ post-sham CFSS, P = 0.9926 vs. pre-CFSS; P = 0.0027 vs. post-sham CFSS) but not in high gamma (P = 0.5345 vs. pre-CFSS; P = 0.5360 vs. post-sham CFSS) frequency band after CFSS (F₃,₂₄ = 2.046, two-way ANOVA, Fig. 6M).

Altogether, these results indicated that exposure of CFSS to rats could also increase the FPP of rACC LFP induced by LIS and HNS to rats, especially in low frequency theta band as well as in high frequency low gamma band ranges.

3.6. Chronic forced swim stress promotes the synchronization between rACC and BLA, and increases the neural information flow from rACC to BLA

To further investigate the spatial and temporal correlation and the functional connectivity between rACC and BLA regions, we employed a method using the cross-correlation of the instantaneous amplitudes of band-pass filtered LFPs (Adikari et al., 2010), which were evoked by LIS and HNS to rats, to calculate coherence values between rACC and BLA regions. The coherence values can be positive (i.e. activities in the two regions tend to go up and down together) or negative (i.e. activities in one region correlates with less activity in another region, and vice-versa) (Harris and Gordon, 2015), and the larger the absolute value, the higher the correlation. In addition, the occurrence of negative lags at the coherence peak indicates that one brain region leads another brain region, and vice-versa, while the close-to-zero lag means the simultaneous activity between the two regions. Moreover, in order to further explore the directionality of the neural information flow between the brain regions during the encoding of nociceptive information process, we introduced the partial directed coherence (PDC) algorithm (Li et al., 2018). The closer the PDC value, a vector length, is to 1, the greater the influence of one brain region on another region, and vice versa. While the PDC value is close to 0, the influence between the two brain regions is symmetric.

Fig. 7A to F depict the coherence and PDC analysis for LIS-induced LFP between rACC and BLA regions in rats exposed to CFSS or sham CFSS, in which the Fig. 7A shows an example of representative traces of LIS-evoked LFP in rACC and BLA, respectively, to indicate the high synchronization between the two brain regions in rats after exposure of CFSS. The occurrence of the close-to-zero lag for the rACC-BLA cross-correlation peak provided a substantial validation for this synchronization between the two brain regions after exposure of CFSS. Furthermore, to examine the in-depth characteristics of the synergic activity...
between the rACC and BLA regions, we also analyzed the cross-correlation for LIS-evoked LFP amplitudes between low (4–30 Hz) and low (low-low), high (31–100 Hz) and high (high-high), as well as low and high (low-high) frequency bands in rACC and BLA regions after exposure of CFSS to rats. The results showed that the coherence coefficient between low and low (0.87 ± 0.03 post-CFSS vs. 0.45 ± 0.04 pre-CFSS vs. 0.53 ± 0.01 post-sham CFSS, P < 0.0001 vs. pre-CFSS or post-sham CFSS), high and high (0.94 ± 0.02 post-CFSS vs. 0.47 ± 0.04 pre-CFSS vs. 0.41 ± 0.05 post-sham CFSS, P < 0.0001 vs. pre-CFSS or post-sham CFSS) and low and high (0.95 ± 0.02 post-CFSS vs. 0.36 ± 0.06 pre-CFSS vs. 0.50 ± 0.02 post-sham CFSS, P < 0.0001 vs. pre-CFSS or post-sham CFSS) frequency bands were significantly increased after stress in the CFSS-treated rats as compared with the control groups (F,0.59 = 2.847, two-way ANOVA, Fig. 7C). Likewise, the coherence coefficient between theta and theta (0.93 ± 0.03 post-CFSS vs. 0.47 ± 0.04 pre-CFSS vs. 0.43 ± 0.06 pre-CFSS vs. 0.41 ± 0.05 post-sham CFSS, P < 0.0001 vs. pre-CFSS or post-sham CFSS and, low and high (0.95 ± 0.02 post-CFSS vs. 0.36 ± 0.06 pre-CFSS vs. 0.50 ± 0.02 post-sham CFSS, P < 0.0001 vs. pre-CFSS or post-sham CFSS) frequency bands, were significantly increased after stress in the CFSS-treated rats as compared with the control groups (F,0.59 = 2.847, two-way ANOVA, Fig. 7C).

Fig. 5. Effects of chronic forced swim stress (CFSS) on the field potential power (FPP) activity of rACC local field potential (LFP) induced by low intensity innocuous stimuli (LIS) to rats. (A–E): Analysis of rACC FPP in the broadband (4–100 Hz) frequency range LFP. (A): Representative examples of raw LFP waveform and the grand averaged time-frequency distribution of rACC LFP and the averaged FPP in CFSS- and sham CFSS-treated rats, before and after stress. Scale bar: 120 μV, 0.3 s. Warm and cool colors indicate the increase and decrease in FPP activity of rACC LFP, respectively. (B and C): Show a representative FPP of rACC LFP and the averaged FPP in CFSS- and sham CFSS-treated rats, before and after stress. (D): Normalized FPP of post-stress relative to pre-stress in CFSS- and sham CFSS-treated rats. (E): Histogram of rACC FPP in low frequency (4–30 Hz), high frequency (31–100 Hz), and the broadband (4–100 Hz) frequency ranges LFP. *P < 0.05, two-way ANOVA followed by Tukey’s multiple comparisons test, n = 4 rats per group. (F–I): Analysis of low frequency band (4–30 Hz) FPP of rACC LFP. (F and G): Show a representative FPP of rACC LFP and the averaged FPP in CFSS- and sham CFSS-treated rats, before and after stress. (H): Normalized FPP of post-stress relative to pre-stress in CFSS- and sham CFSS-treated rats. (I): Histogram of rACC FPP in theta (4–8 Hz), alpha (9–12 Hz) and beta (13–30 Hz) frequency range LFP. *P < 0.05, two-way ANOVA followed by Tukey’s multiple comparisons test, n = 4 rats per group. (J–M): Analysis of high frequency band (31–100 Hz) FPP of rACC LFP. (J and K): Show a representative FPP of rACC LFP and the averaged FPP in CFSS- and sham CFSS-treated rats, before and after stress. (L): Normalized FPP of post-stress relative to pre-stress in CFSS- and sham CFSS-treated rats. (M): Histogram of rACC FPP in low gamma (31–70 Hz) and high gamma (71–100 Hz) frequency ranges LFP. P > 0.05, compared between post-CFSS and pre-CFSS or between post-CFSS and post-sham CFSS, two-way ANOVA followed by Tukey’s multiple comparisons test, n = 4 rats per group.
post-sham CFSS, P < 0.0001 vs. pre-CFSS or post-sham CFSS), low gamma and low gamma (0.93 ± 0.02 post-CFSS vs. 0.45 ± 0.05 pre-CFSS vs. 0.50 ± 0.02 post-sham CFSS, P < 0.0001 vs. pre-CFSS or post-sham CFSS) and, theta and low gamma (0.93 ± 0.02 post-CFSS vs. 0.45 ± 0.05 pre-CFSS vs. 0.50 ± 0.02 post-sham CFSS, P < 0.0001 vs. pre-CFSS or post-sham CFSS) frequency bands, were also significantly increased after stress in CFSS-treated rats (F_{6,60} = 1.271, two-way ANOVA, Fig. 7D). However, between CFSS- and sham CFSS-treated rats, no significant difference was observed either on the absolute PDC values (P > 0.9999, F_{12,80} = 0.264, two-way ANOVA, Fig. 7E), or on the normalized PDC values of post-stress LFP relative to pre-stress LFP (P = 0.9997, F_{4,30} = 0.317, two-way ANOVA, Fig. 7F) at the rACC–BLA pathway.

Similarly, Fig. 7G to L describe the coherence and PDC analysis for
HNS-induced LFP between rACC and BLA regions in rats exposed to CFSS or sham CFSS, in which Fig. 7G shows an example of representative traces of LIS-evoked LFP (A) and HNS-evoked LFP (G) in rACC and BLA, respectively, to indicate the high synchronization between the two brain regions in rats after exposure of CFSS. Scale bar: 50 μV, 0.2 s. (B and H): Representative traces show the lags of rACC-BLA LFP coherence respectively induced by LIS (B) and HNS (H) in CFSS- and sham CFSS-treated rats. Note that the occurrence of the close to-zero lag for the rACC-BLA cross-correlation peak provided a substantial validation for this synchronization between the two brain regions after exposure of CFSS. (C and I): The cross-correlation analysis for LIS-evoked LFP amplitudes (C) and HNS-evoked LFP amplitudes (I) between low (4–30 Hz) and low (low-low), high (31–100 Hz) and high (high-high), as well as low and high (low-high) frequency bands in rACC and BLA regions after exposure of CFSS to rats. ***P < 0.001, two-way ANOVA followed by Tukey’s multiple comparisons test, n = 4–6 rats per group. (D and J): The cross-correlation analysis for LIS-evoked LFP amplitudes (D) and HNS-evoked LFP amplitudes (J) between theta and theta, low gamma and low gamma, as well as theta and low gamma frequency bands in rACC and BLA regions after exposure of CFSS to rats. ***P < 0.001, two-way ANOVA followed by Tukey’s multiple comparisons test, n = 4–6 rats per group. (E and K): Partial directed coherence (PDC) analysis for LIS-evoked LFP (E) and HNS-evoked LFP (K) between rACC and BLA regions in CFSS- and sham CFSS-treated rats. P > 0.05, two-way ANOVA followed by Tukey’s multiple comparisons test, n = 4–6 rats per group. (F and L): Normalized PDC values of post-stress LFP relative to pre-stress LFP, evoked by LIS (F) and HNS (L), in CFSS- and sham CFSS-treated rats. *P < 0.05, two-way ANOVA followed by Tukey's multiple comparisons test, n = 4–6 rats per group.

HNS-induced LFP between rACC and BLA regions in rats exposed to CFSS or sham CFSS, in which Fig. 7G shows an example of representative traces of HNS-evoked LFP in rACC and BLA, respectively, to indicate the high synchronization between the two brain regions in rats after exposure of CFSS. The occurrence of the close to-zero lag for the rACC–BLA correlation peak also provided a solid validation for this synchronization between the two brain regions after exposure of CFSS. The coherence coefficient for HNS-evoked LFP amplitudes between low and low (0.94 ± 0.03 post-CFSS vs. 0.42 ± 0.03 pre-CFSS vs. 0.53 ± 0.02 post-sham CFSS, P < 0.0001 vs. pre-CFSS or post-sham CFSS), high and high (0.99 ± 0.03 post-CFSS vs. 0.42 ± 0.06 pre-CFSS vs. 0.50 ± 0.04 post-sham CFSS, P < 0.0001 vs. pre-CFSS or post-sham CFSS) and, low and high (0.98 ± 0.01 post-CFSS vs. 0.40 ± 0.08 pre-CFSS vs. 0.54 ± 0.03 post-sham CFSS, P < 0.0001 vs. pre-CFSS or post-sham CFSS) frequency bands, were also significantly increased after stress in CFSS-treated rats (F_{6,60} = 0.862, two-way ANOVA, Fig. 7J). Although no significant difference was observed on the absolute PDC values (P > 0.9999, F_{12,90} = 0.374, two-way ANOVA, Fig. 7K), the normalized PDC values of post-stress LFP relative to pre-stress LFP at the rACC–BLA pathway was significantly increased (117.6 ± 8.1% CFSS vs. 84.4 ± 18.5% sham CFSS, F_{4,37} = 2.403, P = 0.0437) in theta frequency band in rats exposed to CFSS (two-way ANOVA, Fig. 7L).

Taken together, the aforementioned data suggested that exposure of chronic FS stress to rats not only promoted the functional connectivity and the synchronization between rACC and BLA regions, but also enhanced the pain-related neural information flow from rACC to BLA.
4. Discussion

In this study, we provided several lines of evidence to show that chronic FS stress (CFSS) could result in an increased activity of rACC neuronal population and promote the functional connectivity and synchronization between rACC and BLA regions, and also, enhance the pain–related neural information flow from rACC to BLA, which likely underlie the pathogenesis of stress–induced hyperalgesia (SIH). Previously, we have reported that the amygdala is involved in CFSS–induced depressive-like behaviors and the exacerbation of neuropathic pain in rats (Chen et al., 2018a; Li et al., 2017), of which, the synaptic efficacy of rACC FPP induced by LIS and HNS was also significantly increased in rats subjected to CFSS. Likewise, the activity of rACC FPP induced by LIS and HNS were also significantly increased in theta and low gamma frequency bands, was substantially increased in rats subjected to CFSS. These findings present solid evidence for our understanding that an increased synchronization of rACC neuronal activity, manifested by the augmentation of rACC FPP in theta and low gamma frequency bands, may play an important role in SIH processing.

Previously, we have reported that the amygdala is involved in CFSS–induced depressive-like behaviors and the exacerbation of neuropathic pain in rats (Chen et al., 2018a; Li et al., 2017), of which, the BLA and CeA are shown to play important roles in the integration of affective and sensory information including nociception (Li et al., 2017; Padival et al., 2013). Direct neuronal projections from ACC to BLA also participate in emotional functions such as fear learning (Alisop et al., 2018; Jhang et al., 2016). The association between rACC and amygdala was increased in a variety of neurological and psychiatric disorders including neuropathic pain (Cao et al., 2016), whereas disruption of synchronized theta oscillations in the ACC–BLA pathway was suggested contribute to the emotional and cognitive deficits in rats (Mu et al., 2015). In addition, cross–frequency coherence has functional significant in both information processing and detecting broad–range correlations of field potential oscillations and the synchronization among different brain regions (Benchenane et al., 2011; Buzsaki and Schomburg, 2015), thereby potentially reflecting the functional connectivity of these areas (Herrmann et al., 2004). It is known that the occurrence of negative lags at the coherence peak indicates that one brain region leads another brain region, and vice-versa, while the close to-zero lag means simultaneous activity between the two regions (Adhikari et al., 2010; Taghva et al., 2012). In this study, as analyzed for both LIS–evoked LFP.

...
and HNS-evoked LFP in rACC and BLA, we robustly observed an evident close-to-zero lag appeared on the rACC–BLA correlation peak, suggesting a high synchronization between these two brain regions after exposure of CFSS to rats. Moreover, we found that the coherence coefficient between low and low, high and low, high and high frequency bands, as well as between theta and theta, low gamma and low gamma, theta and low gamma frequency bands, of both LIS-evoked LFP and HNS-evoked LFP in rACC and BLA, were significantly increased after stress in the CFSS-treated rats. Consistently, accumulative evidence has documented that painful laser stimuli can induce event-related theta (Mu et al., 2008) and gamma-band activity (Kim et al., 2015), and the amplitude of gamma power is positively increased coupling with the phase of theta oscillations in chronic inflammatory pain condition (Wang et al., 2016). The theta oscillation of baseline state relates to persistent pain (Fallon et al., 2018), while spontaneous gamma activity (Schulz et al., 2012) and functional connectivity (Fomberstein et al., 2013) are closely connected with the severity of chronic pain. In addition, the theta-gamma phase locking is weakened in depressive-like rats (Zheng and Zhang, 2013), while changes in theta (Taesler and Rose, 2016) and gamma (Leblanc et al., 2014) band power are correlated with subsequent pain perception, and the high activity levels of theta oscillations as well as the balancing and coupling between neural oscillations are also significantly correlated with pain relief (Huang et al., 2018). Together these data with our findings, we suggested that exposure of CFSS to rats may increase the functional connectivity and the synchronization between rACC and BLA regions, and subsequently participate in SIH processing.

To further determine the directionality of the neural information flow between rACC and BLA during SIH processing, we analyzed partial directed coherence (PDC) using the phase and power information of LFPs, to test the potential causal effects of these two brain regions (Li et al., 2018). We found that exposure of CFSS to rats could substantially increase the normalized PDC value of rACC–BLA pathway in theta band of HNS-induced LFP, indicating that chronic FS stress likely enhances the neural information flow from rACC to BLA, to mediate the CFSS–induced augmentation of pain sensitivity.

In conclusion, our present data suggest that exposure of chronic FS stress to rats increases rACC neuron activity, promotes the functional connectivity and synchronization between rACC and BLA regions, and also enhances the pain–related neural information flow from rACC to BLA, which likely underlies the pathogenesis of SIH. These findings extend the understanding of the brain mechanisms underlying SIH processing.

Declaration of interest

The authors declare that they have no competing financial interests to disclose.

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (81671085, 61527815, 81371237) and the National Basic Research Program of China (973 Program, 2013CB531905).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.expneurol.2018.12.009.

References

increased while thalamocortical coherence is decreased in rat models of acute and chronic pain. Pain 155, 773–782.

