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Abstract The local field potential (LFP) is a signal

reflecting the electrical activity of neurons surrounding

the electrode tip. Synchronization between LFP signals

provides important details about how neural networks are

organized. Synchronization between two distant brain

regions is hard to detect using linear synchronization

algorithms like correlation and coherence. Synchronization

likelihood (SL) is a non-linear synchronization-detecting

algorithm widely used in studies of neural signals from two

distant brain areas. One drawback of non-linear algorithms

is the heavy computational burden. In the present study, we

proposed a graphic processing unit (GPU)-accelerated

implementation of an SL algorithm with optional 2-di-

mensional time-shifting. We tested the algorithm with both

artificial data and raw LFP data. The results showed that

this method revealed detailed information from original

data with the synchronization values of two temporal axes,

delay time and onset time, and thus can be used to

reconstruct the temporal structure of a neural network. Our

results suggest that this GPU-accelerated method can be

extended to other algorithms for processing time-series

signals (like EEG and fMRI) using similar recording

techniques.

Keywords Local field potential � Synchronization �
Temporal � Time-shifting � Parallel computing

Introduction

An LFP is a summation of several neuronal assemblies and

it is often hard to trace the corresponding sources [1–3].

Synchronized neural activity reveals important evidence

about the information flow in neuronal networks [4, 5]. To

detect the correlated oscillatory activity underlying LFPs in

different brain regions, several algorithms have been

developed. Classical linear synchronization detection algo-

rithms are widely adopted but they are sensitive to phase-

jitter [6–8]. Wide-band LFPs consist of nested oscillations

[9]. Such oscillations always have a strict phase relation-

ship reflecting how local neural assemblies are affected by

external input [10]. Therefore, algorithms like amplitude-

phase coherence and cross-correlation are very useful in

this kind of application [6, 11]. Signals from two distant

brain regions are generated by different cell assemblies and

do not have a rigid phase-relationship [12]. Therefore,

linear algorithms are not suitable for this type of

application.

Synchronization likelihood (SL) was developed to

analyze the synchronization between brain regions

[13–15]. SL is an unbiased synchronization-detecting

algorithm that compares the temporal patterns of two

signals in terms of their time-delay embedding. This

algorithm focuses more on the similarity between the

temporal patterns of two signals and does not need a strict

phase relationship between them. Therefore, SL algorithm

is widely used in analyzing cross-regional LFP signals.

The typical synchronization detection method, including

the original SL algorithm, usually does not consider the lag
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between LFPs in brain areas [15, 16]. A major reason for

this is the great usage of computation time introduced by

the extra time-shifting steps. Since different cell assemblies

may not respond to an external stimulus simultaneously

[17–20], it is better to take inter-regional delay into

consideration. Accordingly, a methodology or an algorithm

should consider the time required for information to pass

from one brain region to another, to maximize the detecting

sensitivity [18, 21]. We can calculate the synchronization

relationship between two signals by adding an extra delay

between them. Neural assemblies exhibit oscillatory activ-

ities with short epochs, and temporally sliding windows are

also essential in finding the synchronized activities

between two neural assemblies. It has been proposed that

the lag between bi-directionally connected brain area like

the hippocampus and medial pre-frontal cortex can be

evaluated with linear amplitude cross-correlation method-

ology [6]. The SL algorithm has better performance in

detecting non-stationary data and non-linear interdepen-

dence between distant brain regions [15]. However, the SL

algorithm is very computationally intense and extra time-

shifting iterations add significant time-consumption, which

make it hardly applicable.

Recently, graphic processing unit (GPU) acceleration

may enable the processing of massive amounts of exper-

imental data within limited time and resources [22, 23].

Super-computing may now be possible with a desktop

computer equipped with a high-end GPU [24]. Numerous

solutions have been proposed recently for improving the

speed of algorithms like cross-correlation with GPU super-

computing [25].

In the present study, we propose a GPU-accelerated SL

algorithm with 2-D time-shifting. We tested whether this

method could reveal detailed information from original

data with the synchronization values of two temporal axes,

delay time and onset time, and thus if it can be used to

reconstruct the temporal structure of a neural network.

Materials and Methods

Animal Surgery and Behavioral Experiment

Adult male Sprague-Dawley rats were used to record LFPs.

They were provided by Department of Laboratory Animal

Sciences, Peking University Health Science Center. All

experiments were carried out following the Guidelines of

the Animal Care and Use Committee of Peking University.

Rats were housed individually with free access to food and

water under a 12-h dark-light cycle. Thirteen rats weighing

around 300 g were anesthetized using 1% sodium pento-

barbital (0.5 mL/kg) and the head stabilized on a stereo-

taxic apparatus (David Kopf Instruments, Tujunga, CA).

When the animal did not respond to a pinch of the hind

paw and a mild eyelid stimulus, the head skin was removed

to expose the skull. The coordinates of regions of interest

were determined as follows (in mm): anterior cingulate

cortex (ACC), anterior/posterior (A/P) ?2.3, medial/lateral

(M/L) ?0.7, dorsal/ventral (D/V) -2.2; primary

somatosensory area 1 (S1), A/P -1.1, M/L -2.6, D/V

-2.0. Six stainless screws were fixed to the skull without

harming any brain tissues. These screws were also used for

later stabilization of electrodes as well as the ground. Small

craniotomies at the 4 sites with marked coordinates were

carried out to expose the brain. Recordings were made

from 2 9 4 rectangular micro-wire electrodes, each array

25-lm in diameter. Each electrode was implanted extre-

mely slowly to the exact depth to avoid passing over the

target tissue. All electrodes were glued to nearby screws

using dental cement and vulnerable parts of the electrodes

were also sealed in dental cement. Anesthesia was

maintained with sodium pentobarbital during the whole

procedure. After surgery, each rat was housed individually

in its home cage for one week for recovery.

The chamber for behavioral experiments was made of

transparent plastic and the floor was a grid plate with

stainless steel bars. After getting accustomed to the

chamber, the rat was allowed to move freely and monitored

with a camera. A head stage was connected to the electrode

during recording sessions. Laser stimulation was applied

when the rat was lying quietly but not asleep. The laser

beam was emitted from an ultra-pulse carbon dioxide laser

therapeutic machine, with 2 cm from the tip of the laser

guide arm to the rat’s hind paw. The target spot was on the

plantar surface of the left hind paw, with a slight shift from

trial to trial to avoid heat damage. Noxious laser stimula-

tion was provided using the continuous wave mode at

8–12 W for 30 ms. The exact power was adjusted accord-

ing to paw-withdrawal behavior in each rat (power adjusted

to 80% of that required to trigger behavior). Each session

was carried out with 20 valid stimuli with an inter-stimulus

interval of[60 s, and the time stamp of laser emission was

recorded simultaneously. Each rat went through 4 sessions

of laser stimulation with 2-day intervals between sessions.

Data Acquisition

We used a multi-channel recording system provided by

Blackrock Microsystems Ltd (Salt Lake City, UT). LFP

signals from the implanted electrodes were transferred

through an analog band-pass filter (0.3 Hz–7.5 kHz) into

digital form to reach the neural signal processor. Signals

were sorted and recorded using Cerebus� software named

‘‘Central’’, also provided by Blackrock Microsystems Ltd.

The digital filter was set with a pass band between 0 and

0.5 kHz with the sampling rate of 1 kS/s for LFP recording.
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After each recording session, the recorded data were

exported to MatLab (Mathworks, Natick, MA) through

NeuroExplorer (Plexon, Dallas, TX).

Computer

We used a desktop computer with the setup i7 3930k CPU,

32GB RAM, NVidia GTX 560 GPU (with 384 CUDA

cores, 2GB RAM, NVIDIA Corp., Santa Clara, CA), and

another desktop computer with i7 2600 CPU, 16GB RAM,

NVidia Tesla C2050 GPU (with 448 CUDA cores, 3GB

RAM) to perform the computations.

Development of 2-Dimensional Time-Shift Correla-

tion Algorithm

SL is a non-linear algorithm for synchronization detection

[15]. Parameters like computation window size used in this

work were set based on previously published work [14].

The workflow of the 2-D SL algorithm was as follows:

The first step was to select a temporal window for the

synchronization detection in the first signal (source). This

step was necessary because the onset of synchronized

activities may occur in different brain sites at different

times.

In the next step, a second temporal window was selected

with a relative delay to the first temporal window. This

window was then applied to the second signal (sink) to

calculate the SL value between the source and the sink. The

aim of this step was to find the delay of the synchronization

from the source to the sink.

After calculating the SL value in all the time-shifting

steps, we obtained an SL matrix with temporal resolution

on both the delay axis and the time axis. With this extra

delay axis, we evaluated synchronization events with a

delay between two sites.

The 2-D time-shifting procedure increased the comput-

ing time markedly since the SL value needed to be

calculated for many of the above two time-shifting steps.

To solve this problem, we adopted a parallel computing

technique with the GPU (explained later).

Data Processing

A flowchart of the whole synchronization matrix calcula-

tion is presented in Fig. 1A.

Data Pre-processing

The original signals were pre-processed in MatLab before

the SL calculation. There were two main steps, re-sampling

and filtering. The aim of re-sampling was to reduce the

computational cost, and the filtering was to select the

frequency band of interest. The filtering was based on a

non-casual filter based on the fast-Fourier transform (FFT)

and inverse FFT. The signal was first transformed into the

frequency domain by FFT, unwanted frequency compo-

nents were eliminated, and then an inverse FFT was

applied to transform the signal back to the time domain.

The parameters of these steps were based on the frequency

band selected. Assuming that we selected low-pass (LP)

and high-stop (HS) as the low- and high-frequency

boundaries, the re-sampling rate was set to 39 HS. Then

a band pass filter was designed to filter the resampled data

with a pass band from LP Hz to HS Hz.

GPU Acceleration in Synchronization Likelihood Matrix

Calculation

The pre-processed signal was paired and sent to the SL

calculation function (Fig. 1B). In this function, the syn-

chronization values were calculated for a range of time-

shifted computation windows of the two signals. The

calculation mainly consisted of four steps.

First step was vectorization. Signals were sliced into

non-overlapping vectors. The calculation ranges of vectors

were selected from -W2 to -W1 and W1 to W2. And a

reference vector was selected in the center of the signal.

The purpose of W1 was to avoid excess synchrony by the

auto-correlation. W2 was chosen based on the frequency of

interest. Window width selection is shown in Equations 1

and 2 as previously reported [14]. fs is the sampling rate,

LP is the low-pass frequency of the band-pass filter and pref
is the probability that embedded vectors are ‘‘synchronized

events’’ in the calculation window.

W1 ¼ 2 � fs=LP ð1Þ
nrec ¼ W2 �W1 þ 1½ � � pref ð2Þ

The second step was calculating the Euclidean distances

between all vectors in the calculation window and the

reference vector to evaluate each vector’s similarity to the

reference vector.

After calculating the Euclidean distance, for each

channel, a hard threshold was set to select the 5% of

vectors with the shortest Euclidean distances. These

vectors were considered to be recurrent activities of the

reference vector (Equation 2). This process is demon-

strated in Fig. 1C. The temporal patterns of recurrent

events in the two channels were compared. A simultane-

ously-occurring recurrent event was considered to be a

synchronization event. The total number of synchroniza-

tion events in the calculation window was calculated as

shown in Equation 3.
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nAB ¼
Xiþw1

j¼iþw2

nj ð3Þ

The final step was SL value calculation. The synchro-

nization value was calculated by dividing the number of

synchronization events by the total number of recurrent

events from both channels, as shown in Equation 4. After

applying this calculation to different time-shifted signal

pairs, we obtained a synchronization matrix (Fig. 1F).

SLi ¼
nAB

nrec
ð4Þ

The GPU acceleration framework was developed into a

custom CUDA mex-function. SL was calculated in parallel

by the NVIDIA GPUs. CUDA is a parallel computing

platform which enables the NVIDIA GPU to run C

programs. To maximize the calculation speed, we inte-

grated the full 2-D time-shifting SL routine in the C

function. To reduce the CPU–GPU memory transfer

overhead, we coded the full SL routine in the GPU. Two

data segments were sent to the GPU memory in the

beginning. Then each GPU thread was assigned a reference

time point in one of the signals. The Euclidean distance

between all vectors and the corresponding assigned refer-

ence time points were calculated by each GPU thread. In

the next step, distances were sorted and the 5% of vectors

with the shortest distances were selected as recurrent

events. In the final step, for a specific data point in the 2-D

synchronization matrix, an SL was calculated by compar-

ing the ratio of overlapping recurrent events between two

signals with corresponding delay and start times calculated

in the previous step. All these 3 steps were performed in

parallel with CUDA. And the result was returned from the

GPU to the CPU only after the SL calculation.

Cross-Correlation

To compare the current method to a classical synchroniza-

tion algorithm, we also analyzed our data using cross-

correlation. Cross-correlation is a linear synchronization

estimation method and is still widely used in analyzing

electrophysiology signals [6, 16, 26].

To estimate the synchrony between LFPs, 3 steps are

needed as reported previously [6]. (1) Band-pass filtering:

LFP data are first filtered to the frequency of interest, for

the Hilbert-transform has a narrow band assumption. This

step was included in the pre-processing. (2) Calculating the

power envelope using the Hilbert-transform, which was

computed using hilbert in MatLab. The absolute value of

the output complex numbers was calculated as the power

envelope. (3) Cross-correlation of the power envelope:

Mean amplitudes were initially removed from the power

envelopes, then cross-correlation between the power

envelopes was computed using the MatLab function xcorr.

To make a fair comparison with 2-D SL, we also computed

the cross-correlation using a similar 2-D time-shifting

window with a length of W1 as in SL computation.

Simulations with Artificial Signals

In order to validate the performance of the 2-D SL

algorithm, artificial data were constructed to perform

simulations. In the first simulation, a 200-ms Gaussian

smoothed 20-Hz beta wave was added to two segments of a

pink noise signal at 100 ms and 130 ms. The signal-to-

noise ratio (SNR) was set to 1, 2, and 10 to test the

synchronization detection with different levels of noise.

The signal was first filtered to the 13 Hz–30 Hz range then

down-sampled to 150 Hz. The calculation window was set

to -100 ms to 500 ms, and the delay searching range was

set to -200 ms to 200 ms. For the SL algorithm, nrec = 20

and pref = 0.1 were used. Cross-correlation with the same

temporal range was calculated with a window of 50 ms.

Ten simulations were conducted for each SNR level. Two

sample t test was performed to test the synchronization

significance within the synchronization event and outside

the synchronization event.

To test the delay detection performance of the 2-D SL

algorithm, a second testing dataset was constructed. An

LFP epoch recorded from S1 was used as a signal template.

Then this template was temporally shifted 30 ms to

construct a delayed trace. Two levels of pink noise were

added to both traces.

bFig. 1 SL processing routine with GPU acceleration. A Flowchart of

SL computing procedures. B Raw LFP traces from channel A (blue)

and channel B (red). The SL calculating windows (shaded) are shifted

by start time and delay from the beginnings of data segments. C The

SL calculation process of a single computing step. Upper two rows:

normalized LFP traces of selected time window; lower two rows:

normalized Euclidean distance between each state vector and its

reference vector in channel A (blue) and channel B (red). Shaded

areas show the recurrent events in both channels. D Demonstration of

SL calculating steps (Vec, vector; ST, start time). The current page is

marked under the red tab to show a batch of parallel processing tasks

simultaneously carried out by the GPU for the red data trace in C as

time-shifting of 25 resampled data points at a delay. Blue shaded area

in current page shows the parallel processing task carried out by the

GPU for the blue data trace in C with 50 resampled data points from

the initial calculating start point. E Task assignment for the GPU

acceleration procedure. Each block is assigned to execute parallel

processing tasks of a same start time. Every thread within a block is

assigned to calculate the Euclidean distance between a state vector

and its reference vector. For the same value in delay, all threads work

simultaneously to cover all values in start time and therefore to realize

GPU acceleration. F Synchronization matrix of LFP data of channels

A and B. Grey row at a delay of 25 (black arrow) indicates the batch

of parallel processing tasks shown in D. Red arrow, processing task

shown within the blue shaded area in D.
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Feature Extraction

In common electrophysiology experiments, we usually

want to examine the neuronal activities in a particular

circumstance, so we record the neuronal signals many

times. For each trial, we may calculate the synchronization

matrix for every pair of channels. Then we have a

synchronization matrix with a size of subjects 9 tri-

als 9 recording channel number2 to deal with. Therefore,

we need a suitable statistical method to further process

these data.

The synchronization matrix shows the synchronization

pattern between two recording channels. Our aim was to

find the temporal pattern of synchronization and try to

exclude the noise. Electrophysiological signals are not

stationary, so we need to average all the synchronization

events to summarize the stable synchronization pattern

related to the experiment stimulus [15]. Our approach was

to find the largest 5% of values in each synchronization

matrix, and eliminate all small values under a threshold.

The purpose of this procedure was to compress the data and

find the strongest synchronization event in each trial, and to

avoid introducing noisy synchronization events into the

final result. After this step, each synchronization matrix

was compressed into a few data points, and these data sets

were easier to deal with.

Results

Test of 2-D Shifting Synchronization Likelihood

Two simulations were performed to test the performance of

the 2-D SL algorithm in detecting synchronization between

LFPs. In order to check the ability to detect transient

synchronization between different recording areas with a

propagation delay [21], the first simulation was set with a

short epoch of delayed synchronization events. The raw

waveforms of artificial LFP signals and the synchronization

matrices of 2-D SL and cross-correlation are shown in

Fig. 2A. Both algorithms failed to detect fine synchroniza-

tion in a noisy situation; the t test indicated better detection

by cross-correlation, as previously reported [6]. But the SL

algorithm showed a clear relationship between the two

signals in normal and high SNR situations, while the cross-

correlation had more spurious correlations outside the

synchronization event.

To further address the ability of the 2-D SL algorithm to

reveal a driving relationship between two brain regions, a

second simulation was performed. We calculated the LFP

segment recorded from S1 with a 30-ms-delayed version of

the same segment with low and high levels of pink noise

added to both LFP traces. The results for the 2-D SL

algorithm, cross-correlation, and the synchronization value

distribution in the delay axis are shown in Fig. 2B. The SL

algorithm showed a much smoother distribution than the

cross-correlation even in the low SNR situation while the

cross-correlation shows many side peaks in the low SNR

situation.

We also compared the calculation speed of 2-D SL

(CPU version), 2-D SL (GPU version), and cross-correla-

tion (Fig. 3). Because of the communication overheads of

the GPU, the GPU version was slightly slower than the

CPU version of SL and cross-correlation. As the compu-

tation blocks increased, the GPU version quickly overtook

the other 2 algorithms and showed a slower increase in

computing time. With 105 time-shifting operations, the

GPU SL only took 367 ms, while cross-correlation took

17 s (46.39 acceleration) and the CPU SL took 55.2 s

(151.19 acceleration) to finish the computation.

Extraction of Synchronization Events from Mul-

tichannel Electrode Recordings

After validation of the 2-D SL algorithm, we tested it on

LFP data recorded from implanted electrodes from 13

awake, freely-moving rats. Each rat with 8-channel micro-

wire electrodes in S1 and the ACC received laser

stimulation. Whenever a noxious laser stimulus was

applied to the left hind paw, nociceptive information

passed through the central nervous system to reach S1 and

the ACC for information integration [27]. Timing is very

important in this process, because there are different

components of pain perception and each passes through a

different pathway to generate different aspects such as a

tingling sensation and negative emotion [28].

Synchronization matrices around the noxious laser

stimulus onset were calculated (Fig. 4). Both SL and

cross-correlation detected fine 0-lag synchronization

between a selected pair of recording electrodes in S1. SL

had a narrower peak and lower background noise. Syn-

chronization between a pair of electrodes in S1 and ACC

had more noise. SL showed transient synchronizations

from S1 to ACC with a positive delay before stimulation

onset, while cross-correlation failed to detect this.

Constructing the Temporal Structure of the Neural

Network

Using the synchronization matrices, we can define the

temporal relationship between two recording sites. The

detailed temporal synchronization relationship can be

mapped using several synchronization matrices derived

from more than 2 recording sites and in several frequency

bands. The detailed temporal synchronization map can

reveal the pattern of brain activity.
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Noxious laser stimulation was used in the present study

as a paradigm. Pain is a complex neural process that

involves a ‘‘pain network’’ including many brain regions

[28–30]. It is important to know how these brain regions

are dynamically coupled during the onset of pain. Our

method provides a powerful tool for studying the dynamics

of spatially separated brain regions. As our results demon-

strated, the temporal synchronization relationship between

the S1 and the ACC was more significant when a noxious

laser stimulus was applied (Fig. 5). The sensory-discrim-

inative aspect of nociceptive information passes through

the thalamus to S1 in the lateral pain pathway [31, 32],

Fig. 2 Artificial signal validation using two simulation tasks. A Syn-

chronization event detection using 2-D SL and cross-correlation. Left

panels, test signal with different levels of pink noise and a short epoch

of beta oscillation; middle panels, results of SL; right panels, result of

cross-correlation. Note that the SL had a lower synchronization value

than the cross-correlation outside the synchronization event. B Lag

estimation between gamma-band LFP signal and a 30-ms delayed

version with different levels of pink noise. Note that the SL always

had a smoother distribution in the delay axis than cross-correlation,

especially in the low SNR situation.
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while the affective-motivational aspect of this information

also arrives at the thalamus and then passes through the

medial pain pathway to the ACC [33–35]. Fibers between

the S1 and the ACC have been tracked when both regions

are activated during painful sensation in humans [36].

Their anatomical connections are mainly via fiber connec-

tions with the secondary somatosensory cortex and the

insular cortex [37]. Thus, our results further confirm the

temporal synchronization relationship between S1 and the

ACC during pain perception.

In the present study, we also arranged all synchroniza-

tion events in temporal order to better visualize the data

(Fig. 6). First, we compressed all synchronization matrices

into 1-D arrays. This step was carried out by finding the

maximum value along the delay-axis to represent the

synchronization event occurring at every start time. The

next step was sorting the 1-D arrays by temporal order. We

assumed that event-related activities invoked synchroniza-

tion between different pairs of brain regions at different

time points. Thus, after sorting the 1-D arrays of different

synchronization matrices, all arrays were merged into a

final matrix in ascending order of the time of appearance of

the synchronization maximum, providing trace varying

with synchronization. To see the temporal pattern more

clearly, the synchronization arrays were normalized. In this

final matrix, we observed that some channel-pairs showed

characterized temporal pattern with peaks in synchroniza-

tion arrays rather than a uniform distribution. This map

showed their maximum synchronization aligned in tempo-

ral order.

From this temporal pattern map, we visualized the flow

of event-related information. Information in the delay axis

was further analyzed to study the driving relationship

between brain regions (Fig. 6). The data showed that in the

delta and gamma bands, the SL values were biased to a

positive delay while in the theta band the bias was to a

negative delay. These results suggest that S1 precedes ACC

Fig. 3 Computation speed comparison. Time consumption for cal-

culating different numbers of time-shifting steps for cross-correlation

(blue), the CPU version of SL (black), and the GPU version of SL

(red). Both the CPU version of SL and cross-correlation had a linear

increase in calculation time with increasing numbers of calculation

steps. The CPU version of SL was 4 times slower than cross-

correlation. The GPU version of SL was slower with fewer

calculation steps but yielded a 1519 increase in speed than the

CPU version with many calculation steps. Shaded areas, standard

error.

Fig. 4 Synchronization between S1 and ACC in the gamma band.

Synchronization detection of a pair of recording sites within S1 and

between S1 and ACC with 2-D SL and cross-correlation. Both

algorithms detected a 0-phase lag correlation within S1. Note that SL

had a cleaner background. SL detected transient epochs of synchro-

nization between S1 and ACC with a positive lag (black arrows)

while cross-correlation shows a result with more noise.

Fig. 5 Temporal synchronization maps of S1 and the ACC in

different frequency bands (delta, theta, alpha, beta, and gamma). Each

bin is the maximal SL value along the corresponding delay axis, and

then normalized across the start time axis. A and B are representing

maps of control group and noxious laser group, respectively.
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in the delta and gamma bands, while the ACC tends to be

activated earlier than S1.

Discussion

Our work established a novel method to analyze the

dynamics of neural networks. By the 2-dimensional time-

shifting approach, we managed to visualize the synchrony

in activities between different brain areas with high

temporal resolution. The parallel computing technique

was integrated into our work to support the massive

computation. This method was demonstrated to have a high

accuracy in detecting the temporal characteristics of

information flow in a neural network.

Evaluating the Direction of Information Transfer

For time-shifting synchronization detection algorithms, a

delayed correlation peak may suggest a potential causality

or driving relationship [38]. This idea is simple and

straightforward, but it is always hard to perform this kind

of computation for high-density electrophysiology because

of the unrealistic computation time. With the GPU-

accelerated 2-D SL algorithm we developed, this type of

analysis has become more feasible.

If two brain regions have mutual connections, the

correlation may rise in both of the synchronization

matrixes in a temporal order, and the matrix describing

the initial innervating direction will show an earlier uptake.

If the connection is unidirectional, only the matrix in the

innervating direction shows a correlation uptake, and

values from the matrices can reveal how much the two

channels are reciprocally driven.

Kernel Algorithm Selection and Limitation

Our method was based on the SL algorithm. Technically,

any algorithm that can detect synchronization or a corre-

lation between two time-series can be the kernel algorithm

for studying neural dynamics [39, 40]. Based on the

characteristics of each algorithm, the corresponding anal-

ysis would be fit to solve different problems. We will not

go through these algorithms in detail here, but they share a

common weakness: the correlation or synchronization

cannot prove causality [41, 42]. With current techniques,

neurons of the central nervous system are sampled by a

limited number of probes. This means that the number of

sources is larger than the number of probes.

Whenever synchronization is detected between two

sites, we can only infer that the activity of the latter is

likely to be a response to the former. But we cannot

exclude the possibility that synchronized activities of both

sites may be the result of the activity of another site as a

common source, while it takes different propagation times

to get to the receiving sites. Our method was based on one

of these algorithms, so it also has the same drawback.

However, the 2-D time-shifting provided more information

to verify the result. With this additional information,

anatomical knowledge can be more easily incorporated into

the data explanation. For example, we can use the

distribution of delays as an indicator of the stability of

information transfer. If the delay of synchronized activity is

very stable, the lag-distribution would be narrow, and this

would make the conclusion more convincing. Temporal

order is another key clue for investigation. With results like

those shown in Figs 4 and 5, anatomical knowledge can be

included to explain the results.

Future Applications in Time-Series Signals

Our method was developed based on the LFP, which is a

type of time-series signal. It is easy to extend this method

to other multi-site time-series signals like magnetoen-

cephalography (MEG), positron emission tomography

(PET), and spiking multi-unit activity. All these types of

data can use this framework to extract the synchronization

Fig. 6 SL matrices of S1 and the ACC in several frequency bands

and their delay distribution values. A–C SL matrices demonstrating

the temporal distribution of notable synchronization events cumulated

from all channel pairs between S1 and the ACC in the delta (A), theta
(B), and gamma bands (C). D SL value distribution along the delay

axis from these three SL matrices (red, delta; green, theta; purple,

gamma). At each step of delay, the SL values of all start times with

the same delay were calculated for the median and standard deviation.

Each solid line represents the median along the delay axis of each

frequency band, and the shadowed area of the same color represents

the standard deviation along the delay axis of that band.
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onsets and reconstruct the temporal pattern of activities

between recording sites. Our present study suggests that

this method could support better envisioning of neural

network dynamics.
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