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8.1 Introduction

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition

primarily characterised by impairments in social interaction and communication as

well as repetitive/stereotypic patterns of behaviour. The exact aetiology of ASD is

unknown, but there are good indications that both genetic and environmental risk

factors contribute to its pathogenesis (Hallmayer et al. 2011). Among all methods

currently available for the treatment of ASD, rehabilitation training is the only

method that has been proven effective. Although some drugs can relieve some of

the co-morbid symptoms while also causing adverse reactions, they don’t improve

the social interactions or language abilities in most cases. Therefore, it is important

to better understand the aetiology and pathophysiology of ASD in more detail to

find better therapies. Several lines of evidence suggest that the central oxytocin

(OXT) and arginine vasopressin (AVP) system might be involved in the develop-

ment of ASD since both neuropeptides play important roles in regulating social

behaviours.

8.2 OXT/AVP Systems and ASD

In mammals, OXT and AVP are nonapeptides with a six-member disulfide ring

between Cys residues on positions one and six. There are high levels of sequence

homology between OXT and AVP with only two amino acids difference between

them (Harony and Wagner 2010). Through evolution, the two neuropeptides might

have arisen from a gene duplication event, making OXT and AVP known as “twin”

neuropeptides (Donaldson and Young 2008). Both are mainly synthesised in the

hypothalamic supraoptic and paraventricular nuclei (SON and PVN, respectively).

CD38, an ADP-ribosyl cyclase, was recently found to mediate OXT release in the

brain (Jin et al. 2007), and oxytocinase (human leucyl/cystinyl aminopeptidase,

LNPEP) is the enzyme that metabolises OXT and AVP (Tsujimoto and Hattori

2005). The oxytocin receptor (OXTR) is widely distributed in the brain including

the hippocampus, amygdala, striatum, suprachiasmatic nucleus, bed nucleus of stria

terminalis and brainstem. In the periphery, the OXTR is mainly found in the uterus,

mammary gland and the heart. The receptors for AVP are classified into three

subtypes named AVPR1A, AVPR1B and AVPR2 (Thibonnier et al. 2002).

AVPR1A is highly expressed in the brain and plays important roles in the modu-

lation of mammalian social behaviour and cardiovascular functions; AVPR1B is

expressed in the brain and pituitary gland, and several studies revealed that

AVPR1B is involved in the regulation of stress. AVPR2 is mainly expressed in

the kidneys and is associated with water retention (Carter 2007; Harony and

Wagner 2010; Meyer-Lindenberg et al. 2011).

After being synthesised in magnocellular neurons of hypothalamic nuclei, OXT

and AVP are transported and processed along axonal projections to the posterior
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lobe of the pituitary gland. Here they are stored and released into the blood stream

to mediate uterine contractions and milk ejection (OXT) or fluid homeostasis and

blood pressure control (AVP) (Aoyagi et al. 2009; Hew-Butler 2010). Moreover,

OXT- and AVP-expressing magnocellular neurons were also found to project to the

amygdala. OXT and AVP are further synthesised in parvocellular neurons of

hypothalamic nuclei that project to the hippocampus, amygdala, striatum,

suprachiasmatic nucleus, bed nucleus of stria terminalis and brainstem to regulate

glucose metabolism (Cai and Purkayastha 2013), feeding behaviour (Chaves et al.

2013), sexual behaviour (Veening et al. 2015), learning and memory (Chini et al.

2014) and pain perception (Tracy et al. 2015). AVP also participates in the

modulation of feeding, pain perception and aggression behaviour (Ray et al.

2015). In addition, there is accumulating evidence suggesting that both OXT and

AVP play important roles in the regulation of complex social behaviours, such as

social cognition and attachment (Insel and Young 2001), social exploration and

recognition (Winslow and Insel 2004), social approach (Pagani et al. 2011;

Eskandarian et al. 2013), social preference and avoidance (Lukas and Neumann

2014), maternal aggression (Eskandarian et al. 2013), affinitive behaviour [i.e. pair-

bonding (Scheele et al. 2012)] and maternal behaviour (Rich et al. 2014). Impor-

tantly, some of these behaviours are also impaired in ASD.

Data have been obtained showing that plasma levels of OXT (Modahl et al.

1998; Jacobson et al. 2014) and AVP (Al Ayadhi 2005) were lower in autistic

children compared to typically developing children. Moreover, plasma levels of

OXT are positively correlated with the degree of core symptoms in ASD patients

using the Childhood Autism Rating Scale (CARS) (Alabdali et al. 2014). Lower

levels of OXT and AVP were also found in mothers of autistic children, showing a

negative correlation with their children’s autistic behaviour scores (Xu et al. 2013).
However, in a mixed child and adolescent population, ASD was associated with

higher levels of OXT (Taurines et al. 2014) and AVP (Momeni et al. 2005)

indicating that there are multiple factors determining the plasma levels of these

peptides including age (Miller et al. 2013), gender (Jacobson et al. 2014) and

methodological issues (Szeto et al. 2011).

Genetic variants have also been described for the OXTR gene in ASD

populations from different ethnical backgrounds (Wu et al. 2005; Jacob et al.

2007; Liu et al. 2010; Campbell et al. 2011). The current largest and most compre-

hensive meta-analysis included 3941 individuals with ASD and showed significant

associations between ASD and the single nucleotide polymorphisms (SNPs)

rs7632287, rs237887, rs2268491 and rs2254298 in the OXTR gene (LoParo and

Waldman 2015). For the AVPR1A gene, a weak association with ASD was reported

in some ethnical groups (Yirmiya et al. 2006; Tansey et al. 2011).

In order to gain a better understanding of the roles of OXT and AVP in the

pathophysiology of ASD, various animal models have been established. In this

respect, two main strategies have been followed: one is to inactivate rodent Oxt and

Avp system-related genes and analyse putative ASD-like phenotypes; the other is to

find out whether there are changes in the rodent Oxt and Avp systems in existing

ASD animal models. Assays to test for ASD-like symptoms in animal models are,
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for example, the three-chamber test to measure social interaction, the analysis of

ultrasonic vocalisations (USVs) to evaluate vocal communication, the documenta-

tion of increased self-grooming, jumping or repeated circling to analyse stereotypic

repetitive behaviours and the measurement of prepulse inhibition (PPI) of the startle

reflex to screen for abnormal sensory perception.

8.3 Oxt and Avp System-Related Animal Models of ASD

8.3.1 Genotype-Based Models: Oxt System

There are three critical genes of the Oxt system that have been identified so far:Oxt,
Oxtr and Cd38. Accordingly, these genes have all been manipulated in mice to

study Oxt system-related phenotypes (Modi and Young 2012).

The first two Oxt germline knockout (KO) mouse lines were created indepen-

dently in 1996 focusing on peripheral phenotypes, i.e. female KO of both lines

showed normal parturition but no postpartal milk ejection (Nishimori et al. 1996;

Young et al. 1996). The following studies found that Oxt KO mice were responding

to psychogenic stress with overexpression of c-fos and CRH (Nomura et al. 2003;

Amico et al. 2008). Moreover, maternal behaviour was impaired (Pedersen et al.

2006), and Oxt KO females were not able to discriminate parasitised male odour

(Kavaliers et al. 2003). In addition, Oxt KO mice were more aggressive, anxiety

was exaggerated and they failed to develop social memory (Ferguson et al. 2000,

2001; Winslow et al. 2000; Amico et al. 2004; Ragnauth et al. 2005). However,

olfactory detection, spatial memory capabilities and sexual behaviour seemed to be

unaltered (Ferguson et al. 2000; Winslow and Insel 2002; Becker et al. 2013).

Interestingly, the amygdala was found to be involved in the described alterations of

social behaviour (Becker et al. 2013; Mantella et al. 2004). Oxt KO mice further

showed signs of metabolic impairments affecting glucose homeostasis (Amico et al.

2004; Camerino 2009), hydration status (Rinaman et al. 2005) and thermoregula-

tion (Kasahara et al. 2007).

Germline Oxtr KO lines were more specifically characterised regarding

ASD-like phenotypes and showed impaired cognitive flexibility, social deficits,

increased aggression and increased seizure susceptibility (Sala et al. 2011). Impor-

tantly, other studies confirmed the social deficits (Pobbe et al. 2012a, b). Oxtr KO
females were fertile and showed normal reproductive behaviour, but a high level of

pup abandonment was seen (Rich et al. 2014). Compared with the Oxtr null

genotype, heterozygous Oxtr mutants showed normal cognitive flexibility and

aggression but impaired social interaction (Sala et al. 2013). A selective ablation

of the Oxtr in the forebrain using conditional CamkIIα-Cre-Oxtrmutants resulted in

a prominent reduction of the target gene in the lateral septum, hippocampus and

ventral pallidum but not in the medial amygdala. Interestingly, males from this
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conditional mutant line failed to recognise individual mice implicating a specific

deficit of social recognition behaviour (Lee et al. 2008).

Cd38 is a transmembrane glycoprotein with ADP-ribosyl cyclase activity, which

regulates the Ca2+-dependent secretion of Oxt in the hypothalamus. It was shown

that Cd38 KO mice exhibited markedly lower ADP-ribosyl cyclase activity in both

the hypothalamus and pituitary gland. The plasma level of Oxt, but not Avp, was

significantly decreased in Cd38 KOmice, and depolarisation-induced Oxt secretion

and Ca2+ elevation in oxytocinergic neurohypophysial axon terminals were

disrupted (Jin et al. 2007). Further analysis of these mice revealed a significant

impairment of maternal behaviour in females (Lopatina et al. 2011) and paternal

Table 8.1 Summary of the main behavioural phenotypes relevant to ASD in genotype-based

models of the OXT/AVP system

Model Gender

Main behavioural phenotypes

relevant to ASD References

Oxt�/� ♂ and ♀ Social memory #
Maternal behaviour # (♀)
Response to psychogenic stress "
Aggressive behaviour "

Ferguson et al. (2000), (2001)

Pedersen et al. (2006)

Nomura et al. (2003),

Amico et al. (2008)

Winslow et al. (2000),

Ragnauth et al. (2005)

Oxtr�/� ♂ and ♀ Social interaction #
USV number during infancy # (♂)
Pup abandonment " (♀)
Cognitive flexibility #
Aggressive behaviour "

Sala et al. (2011),

Pobbe et al. (2012a, b)

Sala et al. (2011)

Rich et al. (2014)

Sala et al. (2011)

Sala et al. (2011)

Cd38�/� ♂ and ♀ Social recognition # (♂)
USV number during infancy # (♂)
Maternal behaviour # (♀)
Paternal behaviour # (♂)
Locomotor activity "

Higashida et al. (2011)

Liu et al. (2008)

Lopatina et al. (2011)

Akther et al. (2013)

Liu et al. (2008)

BB rat ♂ and ♀ Social recognition #
Emotional reactivity #
PPI deficits

Engelmann and Landgraf (1994)

Williams et al. (1985)

Birkett and Pickering (1988)

Avpr1a�/� ♂ Social interaction #
Social recognition #
Spatial memory #

Egashira et al. (2007)

Bielsky et al. (2004)

Egashira et al. (2007)

Avpr1b�/� ♂ and ♀ Social recognition #
Social memory # (♀)
Social motivation #
USV modulation #
Maternal behaviour # (♀)
Aggressive behaviour "
Locomotor activity "
PPI deficits

Wersinger et al. (2002)

Wersinger et al. (2008)

Wersinger et al. (2004)

Scattoni et al. (2008)

Wersinger et al. (2007a, b)

Wersinger et al. (2002),

Caldwell and Young (2009)

Daikoku et al. (2007)

Egashira et al. (2005)
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Table 8.2 Stimuli of Oxt/Avp release within defined brain regions

Stimulus Species Brain regions Neuropeptides References

Physiological stimuli

Parturition Sheep SN, OB, CSF Oxt" Kendrick et al. (1988)

Kendrick et al. (1991)

Rats PVN, SON Oxt", Avp- Neumann et al. (1993b)

Neumann et al. (1996)

Suckling Rats SON, septum,

hippocampus

Oxt", Avp- Neumann et al. (1994a)

Landgraf et al. (1992)

Neumann and Landgraf

(1989) Moos et al. (1989)

Rats MPOA, BNST Oxt-, Avp" Bosch et al. (2010)

Hyperosmotic

stress

Rats SON Oxt", Avp" Neumann et al. (1993a)

Ludwig et al. (1994)

Neumann et al. (1995)

Ludwig et al. (1996)

Rats Septum Avp" Demotes-Mainard et al.

(1986)

Social/emotional stimuli

Maternal

defence

Virgin

rats

Lactating

rats

PVN Oxt" Bosch et al. (2004)

Maternal

aggression

Lactating

rats

CeA Avp" Bosch and Neumann (2010)

Mating Rats PVN Oxt" Waldherr and Neumann

(2007)

Nyuyki et al. (2011)

Voles NAc Oxt" Ross et al. (2009)

Social

discrimination

Rats LS Avp" Lukas et al. (2011)

Social fear Mice DLS Oxt" Zoicas et al. (2014)

Social defeat Rats LS Oxt" Avp- Ebner et al. (2000)

Rats SON Oxt" Engelmann et al. (1999)

Rats PVN Oxt- Avp" Wotjak et al. (1996)

Physical stimuli

Electrical

stimulation

Rats,

in vitro

Isolated

neurohypophyses

Oxt" Avp" Han (2003)

Restraint

stress

Rats,

voles

PVN Oxt" Babygirija et al. (2012a, b)

Smith and Wang (2014)

Shaker stress Rats PVN Oxt" Avp- Nishioka et al. (1998)

Forced

swimming

Rats PVN, SON Oxt" Avp" Wotjak et al. (1998)

Rats SCN, septum,

CeA

Avp" Ebner et al. (1999)

Ebner et al. (2002)

Engelmann et al. (1998)

Haemorrhage Rats PVN Avp" Ota et al. (1994)

(continued)
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behaviour and social recognition in males (Higashida et al. 2011; Akther et al.

2013). The animals also showed increased levels of locomotor activity and less

frequent USVs in male pups (Liu et al. 2008), while no deficits in lactation or milk

ejection were found in Cd38 female KO mice. Overall, the social deficits of Cd38
KO were less severe than that in Oxt or Oxtr KO mice (Liu et al. 2008). For a

summary of phenotypes, see Table 8.1 and Table 8.2.

Table 8.2 (continued)

Agents

Species and

administration

Brain

regions Neuropeptides References

Mc4r agonists Voles, i.p. NAc Oxt" Modi et al.

(2015)

alpha-MSH Rats, in vitro Isolated

SON

Oxt" Sabatier et al.

(2003)

5-HT Rats, i.c.v. PVN Oxt" Jorgensen et al.

(2003a)

Jorgensen et al.

(2003b)

CCK-8 Rats, i.v. SON Oxt" Avp" Neumann et al.

(1994b)

Interleukin-1β Rats, i.c.v SON Oxt" Avp" Landgraf et al.

(1995)

Neurosteroid Rats, in vitro Isolated

SON

Oxt" Avp" Widmer et al.

(2003)

Wang et al.

(1995)

GABAA receptor

agonist (muscimol)

Rats, in vitro Isolated

SON

Oxt" Widmer et al.

(2003)

Angiotensin Rats, i.c.v. SON, PVN Avp" Moriguchi et al.

(1994)

OXT agonist Rats, in vitro Isolated

SON

Oxt" Moos et al.

(1984)

AVP analogue Rats, local

administration

SON Avp" Wotjak et al.

(1994)

Naloxone Rats, s.c., i.p. SON,

hippocampus

Oxt" Avp- Neumann et al.

(1991)

Douglas et al.

(1995)

Histamine H1/2 Rats, local

administration

PVN Oxt" Bealer and

Crowley (1999)

SN substantia nigra, OB olfactory bulb, CSF cerebrospinal fluid, MPOA medial preoptic area,

BNST bed nucleus of stria terminalis, CeA central amygdala nucleus, NAc nucleus accumbens, LS
lateral septum, DLS dorsolateral septum, SCN suprachiasmatic nucleus, MC4R melanocortin

receptor 4, 5-HT serotonin, CCK-8 cholecystokinin, s.c. subcutaneous, i.c.v.
intracerebroventricular, i.v. intravenous, i.p. intraperitoneal
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8.3.2 Genotype-Based Models: Avp System

Within the Avp system, three genes have been under focus in animal model studies:

Avp, Avpr1a and Avpr1b.
The Brattleboro (BB) rat is the most extensively studied Avp-deficient animal

model, which lacks the ability to synthesise Avp because of a single-base-pair

deletion in the coding region of the Avp gene (Birkett and Pickering 1988; Feifel

and Priebe 2001). These rats exhibit a series of behavioural deficits including

decreased emotional reactivity (Williams et al. 1985), altered motivation and

attention (Williams et al. 1983), impaired social recognition (Engelmann and

Landgraf 1994) and PPI deficits (Birkett and Pickering 1988).

The Avpr1a germline KO mouse exhibits profound impairments in social rec-

ognition and social interaction (Bielsky et al. 2004; Egashira et al. 2007), subtle

olfactory deficits (Wersinger et al. 2007a, b) and impaired spatial memory

(Egashira et al. 2004).

Avpr1b germline KO mice also exhibited reduced social motivation and

impaired social recognition with no change in olfactory discrimination (Wersinger

et al. 2002, 2004). It has also been suggested that female Avpr1bKOmice may have

some social memory deficits since they failed to terminate pregnancy in the

presence of an unfamiliar male (this pregnancy block is also referred to as the

Bruce effect) (Bruce 1959; Wersinger et al. 2008). The ability to modulate USVs

within different social contexts was also impaired in Avpr1bKOmice, and maternal

potentiation of USVs was absent in Avpr1b KO pups. Adult female Avpr1b KO

mice further emitted fewer USVs during the resident-intruder test (Scattoni et al.

2008). Additionally, Avpr1b KO mice displayed markedly reduced social forms of

aggression, including intermale aggression and maternal aggression (Wersinger

et al. 2002, 2004, 2007a, b; Caldwell and Young 2009). Besides these behavioural

alterations, Avpr1b KO mice also exhibited deficits of PPI of the startle reflex

(Egashira et al. 2005) and a higher locomotor activity (Daikoku et al. 2007). For a

summary of phenotypes, see Table 8.1.

8.3.3 The Oxt/Avp System in Monogenic Mouse Models
of ASD

Importantly, the Oxt/Avp system has also been under investigation in some mono-

genic mouse models of ASD. For example, the number of Oxt-positive cells was

decreased in the PVN of Fmr1 (Francis et al. 2014), Cntnap2 (Penagarikano et al.

2015) andMagel2 KO mice (Meziane et al. 2015). Oxtr expression was also altered

in several ASD mutant mice including Fmr1, Dhcr7, Ube3a, Oprm1 and Mecp2
mutants (Kotulska and Jozwiak 2011; Gigliucci et al. 2014). These findings indicate

that an altered Oxt/Avp system may be common feature of monogenic ASD

models.
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8.3.4 Phenotype-Based Models

In contrast to the comparative exploration of inbred mouse strains, there are animals

with natural variations in social behaviour, which may result from changes in

Oxt/Avp system.

Microtine rodents (voles), for example, show a natural diversity in social

behaviour. Therefore, these animals have become an important model to study

the neurobiology of social behaviour in general, but also the specific role of

hormones like Oxt can be analysed. Prairie voles (Microtus (M.) ochrogaster) are
a highly partner-oriented rodent species characterised by a socially monogamous

mating strategy and high levels of alloparental care. The analysis of the Oxt system

in these animals showed that Oxtr density was highest in the prelimbic cortex, bed

nucleus of the stria terminalis, nucleus accumbens (NAc), midline nuclei of the

thalamus and the lateral aspects of the amygdala. In contrast, low levels of Oxtr

binding in the NAc have been demonstrated in nonmonogamous rodent species,

including meadow voles (M. montanus and M. pennsylvanicus), mice and rats

(Insel and Shapiro 1992; Insel and Young 2001). The dense distribution of

Oxt-immunoreactive fibres in the NAc is conserved in voles, mice and rats, and it

is speculated that the differences of social performance might be due to remarkable

species differences in Oxtr binding in this specific region (Ross et al. 2009).

The application of various chemical compounds has also been used to develop

animal models of ASD. For example, valproic acid (VPA) was given to pregnant

rats. The offspring of these rats showed decreased social interactions and fewer

social contacts with both familiar and unknown animals (Schneider and Przewlocki

2005; Dufour-Rainfray et al. 2010). We found that the levels ofOxt and AvpmRNA

and Oxt and Avp peptide were significantly lower in the PVN and SON of the

hypothalamus in a VPA-induced rat model of ASD (unpublished data). However,

opposite observations have also been reported indicating that adult VPA rats had an

increased expression of Oxt in the SON and PVN and an increased expression of

Oxtr in some brain regions including the basolateral and basomedial amygdala

(Stefanik et al. 2015).

The Oxt/Avp system is also involved in some other animal models that exhibit

social behavioural deficits. Results from our research group suggested that sex

hormone levels during pregnancy might play a role in the susceptibility of the

foetus to ASD (Xu et al. 2013, 2015). Rats or mice prenatally exposed to higher

levels of testosterone or bisphenol A (BPA) displayed fewer social interactions as

compared to controls. The analysis of gene expression revealed that Avp mRNA

levels were fourfold diminished in F1 embryonic brains exposed to BPA

(Wolstenholme et al. 2012; Xu et al. 2015). Phencyclidine (PCP) also induces a

dose-dependent disruption of social behaviour and an increase of stereotyped

behaviour in rats. Interestingly, subchronic PCP administration significantly

reduced the density of Avpr1a binding sites in several brain regions in rats

(Sams-Dodd 1995; Tanaka et al. 2003). Mutations in the MECP2 (methyl-CpG-

binding protein 2) gene are causative for Rett syndrome (Amir et al. 1999). It has
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been suggested that this gene can also regulate Avp expression within the hypo-

thalamus (Murgatroyd et al. 2009; Forbes-Lorman et al. 2012).

8.4 Therapeutic Strategies for Targeting the OXT/AVP

System

8.4.1 Acute Administration

Clear improvements in ASD-like symptoms following acute administration of OXT

or AVP have been reported in multiple animal models. For example, single

intraventricular injections of OXT but not AVP could rescue social memory in

Oxt KO mice (Ferguson et al. 2000), while injection of both OXT and AVP could

lower aggression and fully reverse ASD-like behaviour in Oxtr KO mice. A

subcutaneous injection of OXT could further rescue social memory and maternal

care in Cd38 KO mice (Jin et al. 2007). From these experiments it has been

suggested that OXT can also bind to the Avp receptor in the Oxtr KO model

(Sala et al. 2011). Moreover, administration of AVP by microdialysis into the

septum could significantly improve social recognition in BB rats (Engelmann and

Landgraf 1994). In monogenic ASD models such as Oprm1 KO mice, single

intranasal administration of OXT could rescue social impairments (Gigliucci

et al. 2014). It has further been demonstrated that AVP could increase partner-

oriented behaviour in male prairie voles, an effect that was not seen in male

montane voles (Young et al. 1999).

The re-expression of the Avpr1a gene in the lateral septum of Avpr1a KO mice

using a viral vector system resulted in a complete rescue of social recognition

(Bielsky et al. 2005). The introduction of the entire human AVPR1A locus (with all

the surrounding regulatory elements) could also rescue the PPI impairments in

Avpr1a KO mice that were showing increased reciprocal social interactions

(Charles et al. 2014).

8.4.2 Chronic Administration

Regarding chronic treatment, it was reported that daily administration of OXT in

the first postnatal week was sufficient to prevent deficits in social behaviour and led

to a more lasting behavioural recovery in adult Cntnap2mutant mice (Penagarikano

et al. 2015). Other labs reported that chronic administration of OXT has no

therapeutic effects, and sometimes it can even cause impairments in social behav-

iour. In the BTBRmouse model of autism, for example, intranasal administration of

OXT for 30 days starting on P21 did not lead to any improvements in ASD-like

phenotypes including social interaction, repetitive behaviour and fear-conditioned
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learning and memory except for female sniffing in the three-chamber social inter-

action test (Bales et al. 2014). Moreover, intranasal administration of OXT in

prairie voles given from P21 (weaning) to P42 (sexual maturity) with low

(0.08 IU/kg), medium (0.8 IU/kg) and high (8.0 IU/kg) dosages resulted in

dosage-dependent deficits in partner preference behaviour (Bales et al. 2013).

These results indicate that the effects of chronic OXT administration may vary

with dosage, age, duration and course of treatment.

8.4.3 Stimuli Enhancing Synthesis or Release of Oxt and Avp
in Animals

Although direct administration of OXT or AVP is potentially beneficial for ASD

patients, there are several hurdles preventing both from being used as therapeutic

agents: (1) short half-life of both peptides (about 20 min in the brain and 5 min in

the periphery, Mens et al. 1983), (2) poor penetration of the blood-brain barrier

because of the size and charge (Landgraf and Neumann 2004) and (3) the receptors

are desensitised after chronic administration. Therefore, the enhancement of the

physiological synthesis or release of endogenous OXT and/or AVP by various

stimuli may provide an alternative and possibly even more effective therapeutic

strategy.

In rodents, several push-pull perfusion and microdialysis studies have proved

that there is a local release of Oxt and Avp within the hypothalamus and other

limbic brain regions in response to physiological stimuli [suckling, (Moos et al.

1989; Neumann and Landgraf 1989; Landgraf et al. 1992; Neumann et al. 1994a),

parturition (Neumann et al. 1993b; 1996), hyperosmotic challenge (Neumann et al.

1993a, b, 1995; Ludwig et al. 1994)], social or emotional experience (maternal

defence, Bosch et al. 2004, and social defeat, Engelmann et al. 1999) and physical

stimuli (such as chronic homotypic stress, Babygirija et al. 2012a, b, and forced

swimming, Wotjak et al. 1998). Some pharmacological agents also stimulate

release of neuropeptides by activating hypothalamic Oxt and/or Avp neurons. For

example, the exogenous administration of melanocortin receptor (Mcr) agonists to

mice selectively activated Oxt neurons in the hypothalamus (Kublaoui et al. 2008)

and enhanced the central release of Oxt. This can further be blocked by a

melanocortin-4 receptor (Mc4r) antagonist (Sabatier 2006). In addition, the stimu-

lation of Mc4r facilitated Oxt-dependent partner preference formation in the prairie

vole (Modi et al. 2015) and improved social interaction in the Cntnap2 mutant

mouse model of autism (Penagarikano et al. 2015). The serotonin system is also

involved in the regulation of Oxt secretion. Serotonergic fibres and 5-HT receptors

are found in PVN and SON. Both animal and human studies demonstrated that

5-HT agonists elevated peripheral OXT/Oxt (Van der Kar et al. 2001; Lee et al.

2003) and AVP/Avp levels (Jorgensen et al. 2003a, b). The central administration
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of 5-HT increased the excitability of PVN magnocellular neurons (Ho et al. 2007)

and promoted the synthesis and release of Oxt and Avp (Jorgensen et al. 2003a, b).

OXT and AVP are mainly synthesised and stored in the PVN and SON of the

hypothalamus. Several stressors, including forced swimming, immobilisation and

long-term dehydration, increased Oxt and/or Avp mRNA concentrations in the

rodent hypothalamus (Wotjak et al. 2001; Babygirija et al. 2012a, b). Interestingly,

both single and repeated exposure to restraint stress resulted in the upregulation of

Oxt (Zheng et al. 2010) and Avp (Jezova et al. 1995) mRNA expression in the rat

PVN. A recent study in our lab also reported increased number of

Oxt-immunoreactive cells in the PVN in response to stress (unpublished observa-

tion), whereas Avp-immunoreactive cells in PVN or SON were not affected. During

the development of the OXT/AVP system, the production of these neuropeptides

might be especially vulnerable to early-life manipulations. Both environmental

(such as sensory experience, Zheng et al. 2014) and pharmacological (Bales and

Carter 2003; Yamamoto et al. 2004; Penagarikano et al. 2015) manipulations

during early postnatal life enhanced Oxt production as well as social behaviours

during adult life.

Acupuncture, an important component of traditional Chinese medicine, is also

used as a therapeutic option for a wide range of clinical conditions. It has been

suggested that acupuncture or electroacupuncture (EA) stimulation with unique

frequencies facilitates the release of frequency-specific neurochemicals in the

central nervous system (CNS) eliciting profound physiological effects (Han

2003). Rats exposed to 30 min of EA treatment showed increased Oxt levels both

in cerebrospinal fluid (CSF) and in the plasma (Uvnas-Moberg et al. 1993). This

increase also occurred in certain brain regions, including the hypothalamic

suprachiasmatic nucleus, the hypothalamic ventromedial nucleus and

periaqueductal grey (Yang et al. 2007). A study in our lab showed that single EA

intervention potentiated Oxt and Avp gene expression in the SON, but not in the

PVN of adult rats. Repeated sessions of EA resulted in the upregulation of Avp
mRNA levels and increased Oxt and Avp content in the SON. Interestingly, the

EA-induced elevation of neuropeptide levels was accompanied with a social

behavioural improvement of rats (Zhang et al. 2015). Despite these encouraging

findings on EA in rats, several critical questions still need to be clarified in future

studies including the optimal parameters of EA stimulation.

8.5 Translational Medicine of OXT and AVP

Since OXT and AVP are strongly involved in the modulation of social behaviours,

these neuropeptides have been considered as potential therapeutic agents (Bartz and

Hollander 2008; Macdonald and Macdonald 2010; Meyer-Lindenberg et al. 2011;

Anagnostou et al. 2014; Gumley et al. 2014; Guastella et al. 2015; Neumann and

Slattery 2016).
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8.5.1 Effects of Single-Dose Administration of OXT
on Social Cognition in Humans

A large body of research suggested the benefit of OXT nasal spray or intranasal

administration for improving social behaviours including attachment (Buchheim

et al. 2009), social memory (Guastella et al. 2008; Rimmele et al. 2009), facial

expressions (Evans et al. 2010; Marsh et al. 2010), emotion recognition

(Di Simplicio et al. 2009), empathic accuracy (Bartz et al. 2010) and trusting

(Kosfeld et al. 2005; Mikolajczak et al. 2010). Neuroimaging studies in this context

focused on the activity of the amygdala and the functional coupling between the

amygdala and other brainstem regions that mediate autonomic and behavioural

aspects of fear (Kirsch et al. 2005; Domes et al. 2007).

8.5.2 Effects of Acute OXT Administration in Adult Patients
with ASD

Hollander et al. (2003) were the first to report on the effects of intravenous (i.v.)

administration of OXT on facilitating the retention of social cognition in adult

participants with Asperger syndrome. They found a significant reduction of repet-

itive behaviour and an enhanced ability to accurately assign emotional significance

to speech intonation on the speech comprehension task (Hollander et al. 2007).

Subsequent studies from other labs demonstrated that i.v. (Andari et al. 2010; Hall

et al. 2012) or intranasal administration (Guastella et al. 2010) of OXT improved

the symptoms in adolescents or children with Asperger or Fragile X syndrome

(Tachibana et al. 2013).

8.5.3 Multiple-Dose Studies of Intranasal OXT in Patients
with ASD

Most OXT interventions were studied in adult patients with ASD carefully consid-

ering ethical and safety factors. Open-label case studies and uncontrolled cohort

studies imply potential benefits of repeated nasal OXT to treat ASD symptoms

(Kosaka et al. 2012). However, later pilot trials showed controversial results with

either positive (Watanabe et al. 2015) or negative (Dadds et al. 2014; Guastella

et al. 2015) outcomes. Recently, a clinical trial in children raised the hope of a

successful OXT treatment in ASD. In this study, 32 children with ASD received a

5-week OXT or placebo nasal spray. This resulted in significant improvements of

caregiver-rated social responsiveness in the OXT-treated group with mild adverse

events (thirst, urination and constipation). In summary, the human studies are quite

similar to the animal studies showing that the benefit of single dosing could not yet
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been translated to repeated OXT treatment. Further studies are needed to determine

the optimised regimen and route of application for OXT.

For the therapeutic potential of AVP in ASD, data on experimental studies with

patients are still missing. The prominent feature of peripheral AVP is to maintain

blood pressure by its antidiuretic and vasopressor activity (Thompson et al. 2004).

Therefore, the safety of this neuropeptide has to be carefully considered, especially

when it is applied to children.

8.5.4 Endogenous Release of OXT/AVP in Humans

Due to ethical and methodological restriction, it is difficult to obtain local peptide

concentrations in peptide-producing nuclei or CSF from human brains. Up to now,

there are no studies on the central release of OXT or AVP in humans in response to

exogenous stimuli. The reviewed literature is therefore mainly focusing on alter-

ations of peripheral (plasma, saliva and urine) peptide concentrations.

Birth and suckling, two classical physiological stimuli, are known to induce the

release of OXT from the neurohypophysis into the peripheral circulation. Dehy-

dration leads to an increased osmotic pressure, which triggers AVP secretion into the

blood stream. Social stimulation such as social vocalisations (Seltzer et al. 2010),

parent-child contact (Feldman et al. 2014), spouse/partner support (Grewen et al.

2005; Light et al. 2005), empathy towards strangers (Barraza and Zak 2009) and

interpersonal touch (Scheele et al. 2014) triggers peripheral OXT release. Recent

studies in our lab indicated that transcutaneous electrical acupoint stimulation

(TEAS) is also potent to increase plasma AVP levels in children with ASD and

alleviate their social interaction impairments (Zhang et al. 2012). However, there is

no direct evidence that OXT and AVP levels in the periphery reflect the levels and

functions of these neuropeptides in the CNS. Therefore, the interpretation of

peripheral neuropeptide levels with respect to CNS availability of these neuropep-

tides needs more experimental evidence (Horvat-Gordon et al. 2005; Henricson

et al. 2008).

8.6 Conclusions

The OXT/AVP system plays a critical role in social cognition in mammals.

Alterations of OXT/AVP, their receptors or upstream mediators lead to severe

impairments of social behaviour that are reminiscent of clinical symptoms seen in

ASD. Rodent animal models for ASD oftentimes show a clear dysfunction of their

Oxt/Avp system, suggesting an involvement in the formation of social behaviour.

Based on the findings in several animal models, OXT or AVP have been acutely

administered to experimental cohorts. These studies revealed obvious positive

effects on social memory or interaction both in animals and humans. Chronic
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treatment, however, thus far resulted in contradictory results that might be

explained by the complex pharmacological properties and pathway modulation of

OXT and AVP. Stimulating endogenous synthesis and release of OXT and AVP

may therefore be a more promising therapeutic strategy for the treatment of patients

with ASD.
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