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shares many histological features with astrocytes, we there-
fore attempt to review the mechanisms for glioma cells in 
migration and compare them to normal astrocytes, hoping 
to obtain a better insight into the dysregulation of migra-
tory mechanisms contributing to their metastasis in the 
brain.
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Astrocytoma · Glioblastoma multiforme · Metastasis

Introduction

Cell migration is a highly orchestrated process which is 
known by now as a fundamental and essential phenom-
enon underlying tissue morphogenesis, wound healing and 

Abstract  Cell migration is identified as a highly orches-
trated process. It is a fundamental and essential phenom-
enon underlying tissue morphogenesis, wound healing, and 
immune response. Under dysregulation, it contributes to 
cancer metastasis. Brain is considered to be the most com-
plex organ in human body containing many types of neu-
ral cells with astrocytes playing crucial roles in monitoring 
both physiological and pathological functions. Astrocy-
toma originates from astrocytes and its most malignant type 
is glioblastoma multiforme (WHO Grade IV astrocytoma), 
which is capable to infiltrate widely into the neighboring 
brain tissues making a complete resection of tumors impos-
sible. Very recently, we have reviewed the mechanisms for 
astrocytes in migration. Given the fact that astrocytoma 
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immune response. When its orchestration was disrupted, 
it would induce unwanted cell migration such as metasta-
sis. Metastasis is one of the “Hallmarks of Cancer” and the 
leading cause of cancer mortality. When cancer has metas-
tasized, the possibilities of curative treatment would greatly 
reduce. The latest data showed that there were 14 million 
new cases and 8.2 million cancer related deaths in 2012 [1]. 
The number is expected to rise by about 70% over the next 
two decades in the lowest-income countries.

Surgery is one of the main treatments for cancer. How-
ever, when Michael Baum asked the question “Does sur-
gery accelerate or disseminate cancer cells?” [2], the effec-
tiveness of surgery as a cancer treatment had already been 
questioned. There are reports on surgery significantly stim-
ulating the malignant growth of tumor mass [3] and pro-
moting micrometastases [4]. These suggestions chime per-
fectly with our previous findings that a physical scratch in 
culture or a stab wound in brain simulating surgery would 
induce the astrocytes along the wound to be reactivated 
into highly migratory cells [5, 6]. Some of these migratory 
cells also acquired many oncogenic properties [7]. These 
observations supported the potential of surgery in inducing 
unwanted cell reactivation, movement and migration, thus 
might result in metastasis after tumor removal.

Cancer in the brain is the most difficult among all can-
cers to deal with. Astrocytoma is the most common glioma 
arisen from astrocyte, and accounts for ~75% of all glioma 
[8]. World Health Organization (WHO) classified gliomas 
into four grades of ascending malignancy [9]. Glioblastoma 
multiforme (GBM) is grade IV that comprises 55% of all 
gliomas [10]. Their cells diffuse and infiltrate widely into 
brain tissues making a complete surgical resection impos-
sible [11]. Migration and infiltration of astrocytes and 
glioma cells appear to be regulated by some very similar 
mechanisms [7]. This review addresses some interesting 
and promising mechanisms related to glioma cell migra-
tion, including metabolism, epithelial-mesenchymal transi-
tion (EMT) and mesenchymal-epithelial transition (MET), 
β-catenin, integrins, cell polarity, cytoskeleton, epidermal 
growth factor receptor (EGFR) signaling, aquaporins and 
so forth. Meanwhile, some of the similarities and differ-
ences between migration of injured astrocytes [12] and 
metastasis of glioma were compared (Table 1), with a hope 
to further delineate the multiple cues in GBM metastasis - 
the unwanted cell migration.

Glioma metabolism

In the adult mammalian brain, the primary energy substrate 
is glucose [120]. An increase in glucose metabolism was 
observed in the glioma periphery. It would up-regulate 
aquaporin 1 (AQP1), lactate dehydrogenase (LDH), and 

cathepsin B. These up-regulations would contribute to the 
acidification of the extracellular milieu to enhance inva-
siveness of the glioma cells [16]. Tumor growth is usually 
faster than angiogenesis, thus leading to many portions of 
the tumor under a hypoxic microenvironment. The hypoxic 
condition would stimulate Warburg anaerobic glycolysis 
of GMB in both aspects of glucose consumption and lac-
tate production [121–123]. Warburg effect, hypothesized 
by Nobel Laureate Otto Heinrich Warburg in 1924, was 
believed to be the root cause of cancer [124]. It stated that 
cancer, malignant growth, and tumor growth were caused 
by the fact that tumor cells mainly generate energy by 
non-oxidative glycolysis with lactate secretion even in the 
presence of oxygen. The changes of glucose concentra-
tion in tumors would induce carbohydrate-response ele-
ment (ChoRE) expression. The hypoxia would lead to an 
increase in production of hypoxia-inducible factor (HIF-1) 
that acts as a key regulatory transcription factor responsi-
ble for adaptive cellular changes. HIF-1 and ChoRE inter-
act to induce changes with particularly notable in genes on 
metabolism. These genes are glucose transporter (GLUT1), 
hexokinase (HK), phosphoglucose isomerase (PGI), phos-
phofructokinase (PFKL), fructose-bisphosphate aldolase 
(ALDO), glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH), phosphoglycerate kinase (PGK), phosphoglyc-
erate mutase (PGM), enolase 1 (ENOA), pyruvate kinase 
(PK), pyruvate dehydrogenase kinase (PDK1) and lactate 
dehydrogenase A (LDH-A) [125, 126]. Under stressful 
and pathological conditions, lactate and ketone bodies can 
be used as a substitute for glucose [127]. High concentra-
tion of lactate was known to induce glioma cell migration 
through its strong association with TGF-beta2-dependent 
regulation of MMP-2 and integrin αvβ3 receptors [17].

On the other hand, Professor Ursula Sonnewald has 
described that cultured astrocytes and glioblastoma C6 
cells do not show any difference in lactate production in 
the presence and absence of glucose [14]. Instead, they 
are different in their ketone metabolism. Astrocyte utilizes 
ketone bodies to produce glutamine and glutathione. How-
ever, glioblastoma also utilizes ketone bodies, but could not 
perform anaplerosis. They could only produce an extremely 
small amount of glutamine, but a lot of glutamate and 
release them into the extracellular space. This glutamate 
would not only excitotoxically damage and kill many neu-
rons in the tumor neighborhood via the activation of gluta-
mate receptors and changes in the microenvironment [14], 
but also facilitate the invasiveness of the glioblastoma cells 
by stimulating cell proliferation and motility [128, 129]. 
Therefore, further studies on these specific characteristics 
and changes of metabolic pathways in tumor cells might 
lead us to identify some direct targets for the future devel-
opment of metabolic therapy in blocking or manipulating 
glioma growth and metastasis.
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EMT and MET

EMT is a process through which epithelial cells differen-
tiate into mesenchymal cells by losing their cell polarity, 
cell-cell adhesion, and obtaining migratory and invasive 
properties. EMT is also known to be essential in the ini-
tiation of cancer metastasis [130]. MET is the reverse pro-
cess of EMT [130]. Relatively little is known about the 
role MET plays in cancer when compared to the extensive 
studies of EMT in tumor metastasis. MET is believed to 
participate in the establishment and stabilization of distant 
metastasis by allowing cancerous cells to regain epithelial 
properties and integrate into organs [131, 132]. EMT ini-
tiates metastasis by breaking the carcinoma cells adhesion 
and allows them to break through the basement membrane 
into the bloodstream through intravasation. Later, when 
these circulating tumor cells (CTCs) exit the bloodstream 
to form micrometastases, they undergo MET for clonal out-
growth at these metastatic sites. Thus, EMT and MET form 
the initiation and completion of the invasion-metastasis 
cascade.

In gliomas, cells would undergo EMT to obtain the 
capacity to initiate metastasis and invasion. Glioma tissues 
have a diverse phenotype which might be caused by vari-
ous microenvironmental factors and intrinsic genetic alter-
ations. The process of EMT is highly affected by glioma 
microenvironment such as hypoxia or the enrichment of 
myeloid cells, indicating epigenetic mechanisms might be 
more crucial than genetic changes in this process. Interest-
ingly, EMT-inducing factors in gliomas are typically var-
ied from those in other cancers [133]. For example, glio-
mas rarely expressed the most important cell-cell contact 
factor E-cadherin [133]. Moreover, Twist-related protein 1 
(TWIST1), a bHLH transcription factor orchestrating can-
cer metastasis through EMT [134], is believed to be a great 
promising target as a cancer therapeutic [135]. In addition, 
migrating glioma cells underwent EMT may also undergo 
MET for metastatic tumor nodules establishment [133]. In 
recent years, researchers have begun to investigate MET as 
one of many potential therapeutic targets in the prevention 
of metastasis [136]. This approach for preventing metasta-
sis is known as differentiation-based therapy or differentia-
tion therapy.

β‑Catenin

Catenins are a family of proteins to form complexes 
with cadherin in cell adhesion. Four catenins have been 
identified. They are α-catenin, β-catenin, γ-catenin and 
δ-catenin. Several types of catenins work with N-cadher-
ins to play important roles in learning and memory [137, 
138]. Among these subtypes, most studies were focused on 

α-catenin and β-catenin on their multiple roles in cell adhe-
sion. They were identified in association with cadherins at  
cell-cell junctions linking their cytoplasmic tails to actin 
via α-catenin [139].

β-Catenin is a marker protein of EMT and has recently 
received a lot of attention. The dysregulation of β-catenin 
pathway inevitably affects cell growth, proliferation, and 
metastasis [140]. Our previous work has demonstrated 
that β-catenin was dissociated from the catenin-cadherin 
complex in cell membrane after astrocyte injury and the 
detached catenin was translocated into nucleus during astro-
cyte reactivation [7]. High level of β-catenin protein would 
lead to an enhancement in cell migration [141]. The high 
level is likely resulted from the inhibition of its degradation 
[142]. Inhibition of β-catenin reduces both the response of 
astrocytes to injury and the induction of the malignant phe-
notype of astrocytoma. In astrocytoma, catenin signaling 
pathways were also found to be activated and dysregulated 
[7]. Therefore, β-catenin is not only important in astrocytes 
migration after injury, but also essential in glioma metasta-
sis [142–144].

β-Catenin is also regarded as a key signal transducer 
of the canonical Wnt signaling pathway in many central 
developmental and pathologic contexts [145]. The up-
regulation of many key molecules in the Wnt/β-catenin 
signaling pathway has been identified in astrocytoma [7, 
142, 146]. The Wnt/β-catenin pathway is involved in the 
regulation of glioma cell migration through promoting 
nuclear translocation of β-catenin [91]. The pathway was 
also shown to be up-regulated by FoxM1 which plays an 
important role in the development and progression of GBM 
by regulating factors involved in EMT and tumor cell inva-
sion [91]. Wnt inhibitory factor 1 (WIF1) was found to be 
down-regulated in numerous cancers [147]. It is conceiv-
able that WIF1 inhibits Wnt/β-catenin signal to induce the 
reversal of EMT, i.e., MET. Some recent basic and clinical 
research have provided promising results for treating vari-
ous catenin-associated cancers [148]. Apparently, the Wnt/
β-catenin pathway plays crucial roles in glioma metastasis 
and elicits a variety of actions and functions, some of which 
may possibly even prove to be anti-oncogenic. Before fur-
ther elucidation of the pathway, its diversity would create 
lots of difficulties in finding precision cancer therapeutic 
targets related to catenin [148].

Integrins

When cancer cells undergo metastasis, invasion and migra-
tion to a new tissue, they will have to detach, penetrate and 
attach to the basal matrix of the target tissue. This process 
allows cancer cell to leave from their primary site and pull 
itself forward into the new tissue. Integrins are a large 
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family of cell-surface receptors mediating the attachment 
of tumor cells [149]. They are heterodimers with α and β 
subunits and with many variants [150]. Integrins interact 
with major plasma membrane components of the tumor cell 
and ion channels to play crucial roles in metastasis. Integ-
rins are essential for cell migration and invasion, not only 
for their direct mediation of cell adhesion to the extracellu-
lar matrix (ECM) [150], but also for sending and receiving 
molecular signals for regulating cytoskeletal organization, 
force generation and survival.

Integrins express and distribute remarkably higher on 
the surface of malignant tumors as compared with the same 
type of pre-neoplastic tumors [151]. Its up-regulation in 
gliomas has been demonstrated to be closely correlated 
with tumor metastasis [28]. Tumor cells adhere and migrate 
along the ECM components in the brain via integrin recep-
tors [152].

As mentioned above, integrin αvβ3 works closely with 
lactate in glioma metastasis. Now with more details, integ-
rin αvβ3 is part of matrix metalloproteinase (MMP)-activat-
ing complex [153] which modulates glioma cell migration 
[154]. The up-regulation of integrin αvβ3 is a needed fac-
tor for transforming growth factors β (TGF-β) to promote 
glioma cell migration [155]. The interactions of integrins 
with ECM and the signaling pathways triggered could be 
negatively regulated by tumor suppressor PTEN through 
their direct dephosphorylation of two key tyrosine-phos-
phorylated proteins [156]. Moreover, integrin-β1 could 
interact with an amiloride-sensitive nonselective cation 
channel through α-actinin to regulate glioma cell migration 
and proliferation [45]. This ion channel complex composed 
of acid-sensing ion channel (ASIC)-1 and epithelial Na+ 
channel (ENaC) α- and γ-subunits and has not been identi-
fied yet in normal astrocytes.

Integrins could indirectly contribute to tumor metasta-
sis by activating other oncogenes/mitogens such as HIFs. 
In addition to the metabolic effects mentioned above, HIFs 
could contribute to the modulation of the tumor microenvi-
ronment through secretion of growth factors such as eryth-
ropoietin (EPO) and vascular endothelial growth factor 
(VEGF) [157, 158]. Paulus and Tonn identified that integ-
rins are also involved in basement membrane invasion pre-
ceding meningeal dissemination and metastasis of glioma 
cells [159]. Taken together, integrins appear to play impor-
tant roles in the penetrative growth, migration and invasion 
of glioma cells. Therefore, they have the potential to be 
attractive tumor therapeutic targets for GBM [160].

Cell Polarity

One important initial step for preparation of a cell in migra-
tion is the establishment of cell polarity, which is essential 

for directional cell translocation. Perturbation of cell polar-
ity is a distinctive characteristic of cancer cells. Glioma 
cell polarization, migration and invasion are known to be 
affected by glycogen synthase kinase 3 (GSK-3), Arp2/3 
complex, N-cadherin and Rho-mDia1 pathways [7, 77, 96, 
161].

GSK-3 is encoded by GSK-3α and GSK-3β. The phos-
phorylation of GSK-3β at the Ser9 (pSer9-GSK-3β) was 
enriched and localized at the leading edge of scratched gli-
oma cells [96]. The enrichment and polarized localization 
of pSer9-GSK-3β involved with PKC and MAPK pathways 
and were critical for glioma cell invasion [96]. On the other 
hand, the down-regulation of GSK-3α and 3β by specific 
small interfering RNAs inhibited glioma cell invasion [96]. 
Actin-related proteins (Arps) play a major role in the regu-
lation of actin cytoskeleton. Two of its subunits, Arp2 and 
Arp3, closely resemble the structure of monomeric actin. 
Arp2/3 complex is a seven-subunit protein complex that 
binds to actin networks to rearrange actin cytoskeleton, an 
important process for cell locomotion, phagocytosis, and 
intracellular motility of lipid vesicles. Inhibition of Arp2/3 
complex would demolish lamellipodia and cell polarity. 
This would seriously de-escalate the ability of glioma cell 
migration and invasion [77]. However, loss of N-cadherin 
in EMT would contribute to the loss of cell polarity and 
promote the invasive capacity with a faster but less-directed 
migration of astrocytoma [70]. Such effects were acquired 
through the modulation of focal adhesions and subsequent 
integrin dependent cell division cycle 42 (cdc42)-mediated 
polarity pathway [70]. mDial, a member of the formin pro-
tein family, is a Rho effector. Rho-mDia1 pathway works 
critically to direct cell migration in gliomas through regu-
lating polarization and focal adhesion turnover by aligning 
cytoskeleton actin [161]. In addition, glioma cell polari-
zation and directional cell migration were also found to 
be actively regulated by interstitial flow through a CXC 
chemokine receptor type 4 (CXCR4) dependent mechanism 
[51]. Although the above findings indicated an essential 
involvement of cell polarity in gliomas, the amount of data 
is still not enough to fully elucidate the underlying mecha-
nism. Therefore, it is still too early to consider the transla-
tion of these polarity information into therapeutics in pre-
vention of unwanted cell migration in cancer.

Cytoskeleton

Cytoskeleton is the network of filaments and tubules inter-
connecting filamentous bridges which give shape, structure 
and organization to the cytoplasm. Cytoskeletal filaments 
compose of microfilaments, intermediate filaments, and 
microtubules. Dysregulation of these filaments has been 
identified in various types of tumors and the locomotion 
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of these filaments is a crucial contributor of cancer cell 
spreading.

Microfilaments, also called actin filaments [162], are 
filamentous structures in the cytoplasm and form part of 
the cytoskeleton, which are involved in the movement of all 
mobile cells. The importance of actin regulation has been 
underscored by inhibition of Rho kinase. Among many reg-
ulators of actin filaments, we shall focus more in discussion 
of the Rho GTPases family. Rho GTPases have been shown 
to regulate many aspects of intracellular actin dynamics in 
cell adhesion, migration and invasion. Rho GTPases belong 
to the family of small signaling G proteins and also are a 
subfamily of the Ras superfamily. Rho GTPases mem-
bers have been identified in astrocytoma and melanomas 
[163]. The Rho family contains 22 members, among which 
Cdc42, Rac1, and RhoA are being studied in detail [163].

Activation of Rho or Rac has been shown to associate 
with the proliferative and migratory phenotype of glioma 
cells [82, 164]. Abnormalities of Rho and Rho-associated 
coiled-coil-containing protein kinase (ROCK) enhance gli-
oma cell migratory phenotype and induce the local spread 
of GBM [165]. Overexpression of Rac1N17 in glioma cells 
has been shown to promote cell migration [108]. Deletion 
of Rac1 inhibited the medulloblastoma cells migration and 
invasion through decreasing the cross-linked actin network 
and pseudopodia [109]. Inhibition of Rho kinase leads to 
the down-regulation of matrix metalloproteinases (MMPs) 
and VEGF expression in glioma cells. These down-regula-
tions would also reduce the migration of adjacent endothe-
lial cells and angiogenesis. Moreover, Src-induced dis-
ruption of actin network would lead to a decrease of cell 
migration and invasion [111]. Again, the Src effect is also 
known to be mediated by the inactivation of Rho-Rac-
Cdc42. Thus, Rho kinase might end up playing a key role 
in establishing a tumor microenvironment [166]. The up-
regulation of TWIST1, a great promising target as a cancer 
therapeutic [135], has been found to significantly promote 
actin cytoskeletal re-organization and enhance cell migra-
tion, adhesion and invasion in GBM [135, 167]. SEPT7 is 
documented as a cytoskeletal protein with GTPase activity 
and with markedly decrease level in various gliomas [82]. 
SEPT7 functions in gliomagenesis and in the suppression 
of glioma cell growth. Its expression is decreased in astro-
cytomas with different grades and plays a tumor suppressor 
role. It was found to reduce glioma cell migration by pro-
moting the phosphorylation of cofilin, a widely distributed 
intracellular actin-modulating protein to cause actin depo-
lymerization [82].

There are also other actin related regulators involved in 
glioma metastasis but without known relationship to Rho 
GTPases. For example, plasma filamin-A is an actin-bind-
ing protein crosslinking actin filaments to membrane gly-
coproteins, and was also determined to be a specific and 

sensitive marker for high-grade astrocytoma [83]. Extracel-
lular S100 protein A4 interacts with both intracellular and 
extracellular signaling proteins to speed up astrocytic tumor 
cell migration through modification of actin cytoskeleton 
[114]. Blocking the PKC-mediated actin cytoskeleton rear-
rangements using co-treatment of As2O3 and berberine 
would significantly inhibit glioma cell metastasis [102].

Intermediate filaments GFAP and nestin expression in 
astrocytoma appeared to be dysregulated for their locali-
zations in contrast to their organized pattern in normal 
reactive astrocytes [7]. Moreover, intermediate filaments 
interact with nucleoside diphosphate kinase β (Nm23-R1/
NDPKβ), an enzyme functional in cell proliferation, dif-
ferentiation, tumor progression and metastasis, in cAMP-
induced differentiation of rat C6 glioma cells [116]. In 
glioblastomas, cells strongly express GFAP, vimentin and 
nestin. In subependymal giant-cell astrocytoma (SEGA), 
the majority of tumors were GFAP positive and cell pro-
cesses were filled with intermediate filaments [168]. Fur-
thermore, intermediate filaments were also abundant in 
gangliogliomas [169]. However, in oligodendrogliomas, 
intermediate filament proteins are barely observed [170]. 
Apparently, the direct involvement of intermediate fila-
ments in glioma metastasis remains undefined.

Like in other tumors, glioma metastasis also requires a 
flexible adaptation of cell shape and cell plasticity. Micro-
tubules associate with centrosome, and together they regu-
late cell structure and shape [171]. Microtubule β-tubulin 
shows elevated expression in astrocytoma, and the nitra-
tion of β-tubulin to form nitro-β-tubulin which functions in 
cytoskeleton and cell migration, is positively correlated to 
the grade of astrocytoma [81]. γ-Tubulin, a core centroso-
mal protein essential for microtubule nucleation, co-immu-
noprecipitated with tumor metastasis suppressor Nm23-R1, 
a constituent of the centrosome, indicating a possible role 
involved [172].

Although studies with consistent differences in cytoskel-
etal structure between gliomas and astrocytes have not 
been well identified so far, the presence of more subtle bio-
chemical alterations in the cytoskeletal structure of glioma 
cells that contributes to metastasis indicates the important 
roles cytoskeletal network plays. Further work need to be 
directed at identifying the various alterations of cytoskel-
etons involved in glioma metastasis in a more systematic 
way.

EGFR Signaling

Epidermal growth factor receptor (EGFR) is a transmem-
brane receptor with intrinsic tyrosine kinase activity. It is a 
potent mitogen receptor but normally not detectable in the 
mature CNS. Astrocytes in the cerebral cortex of mouse 
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express a low level of EGFR [173, 174], but with com-
pletely undetectable amount in human brain [175–178]. 
However, EGFR level in astrocytes is substantially induced 
and enhanced under mechanical injury, ischemia and 
human glial tumors [175–178]. Ligand binding to these 
EGFR causes receptor phosphorylation and activates sev-
eral important signaling pathways such as PI3K, Akt and 
mTOR. These subsequently result in changes of cell mor-
phology, motility, and gene expression leading to cell 
migration [179].

EGFR signal dysregulation is a very common phenom-
enon in gliomas [180]. The gene encoding EGFR is fre-
quently mutated, amplified, and/or rearranged in malignant 
astrocytoma. EGFRvIII is a constitutively active form of 
truncated EGFR. GBM cells expressing EGFRvIII release 
soluble urokinase receptor to promote glioblastoma cell 
migration and invasion via activation of ERK1/2 pathway 
[52]. Dysregulation of EGFR pathway by the deficient in 
endogenous inhibitory elements such as microRNA-7 
eventually leads to the failure in control of glioma growth 
and causes tumor metastasis [50]. Nevertheless, EGF is 
an essential factor to maintain the self-renewal of glioma 
stem cells in vitro, indicating EGFR signals play a role in 
maintenance of the stem cell population in gliomas [179, 
181]. It is now believed that targeting EGFR with micro-
RNA-7 might be a promising plasmid-based antitumor and 
anti-metastasis gene therapy for human malignant glioma 
treatment [50].

Aquaporins

Cell preparation for migration in its confined 3D microen-
vironments requires cell volume regulation via water per-
meation. Aquaporins (AQPs), a family of water channels, 
constitute the principal pathway for water movement across 
the plasma membranes. AQPs were identified to play 
important roles in tumor cell migration, angiogenesis, cer-
ebral edema and cell-cell adhesion in the brain [182–184].

AQPs on tumor cell membrane could create a net inflow 
of water and ions to the leading cell protrusions to affect 
their polarization, total number and size [43, 185, 186]; 
meanwhile they could allow a net outflow at the trailing 
edge leading to the cell displacement [187]. Modification 
of the expression and localization of different isoforms 
of AQPs correlate well with glioma cell migration [42]. 
AQP1 and AQP4 are detected in all biopsies from glioma 
patients with their expressions associated with histological 
subtype and tumor location [42, 182]. High levels of AQP1 
and AQP4 are detected in astrocytoma [182]. AQP5 is also 
detected in some of the biopsy samples. Furthermore, the 
level of AQP9 in astrocytoma is significantly higher than 
in the normal brain tissues and its expression levels are 

positively correlated with the pathological grade of tumor 
[44].

The level of AQP1 was reported to be extremely high 
in GBM [42, 188]. The high level of AQP1 was found to 
enhance glioma cell growth, migration and invasion [42, 
189]. Up-regulation of AQP1 contributes to acidification 
of the extracellular milieu and to the invasive potential of 
glioma cells in perivascular space [16]. The exact subcel-
lular localization of AQP1 in the CNS is still not clear and 
its functions remain to be elucidated.

An increase of AQP4 expression was found in GBM. 
AQP4 is the most studied AQP in the brain. It was believed 
to be the major water channel in maintaining water and ion 
homeostasis in CNS [182]. AQP4 expression was shown 
to be slightly higher than AQP1 in astrocytoma, and it was 
involved in promoting cancer cell migration [182]. GBM 
cell migration and invasion was significantly impaired after 
AQP4 was deleted [43]. AQP4 was reported to undergo 
rapid rearrangements of their localization in glioma, lead-
ing to changes of the actin and the osmolality of the cyto-
plasm [43, 185, 186]. Therefore, AQP4 might mediate 
water flux, thus facilitates rapid modification of cell volume 
and shape in order to accelerate cell movement [190]. PKC 
activation could inhibit the AQP4 mediated water perme-
ability and at the same time the rate of glioma invasion 
[191]. However, the underlying molecular mechanisms of 
these AQP4 effects are far from understood. Therefore, fur-
ther research on AQPs is urgently required to provide more 
insight into how water influences the unwanted migration 
and infiltration of glioma cells.

Other Factors in Glioma Metastasis

Tumor metastasis is a very complex process. Up to today, 
we have acquired a great amount of knowledge on its mech-
anism and markers, but unfortunately it is still far from 
identifying precise metastatic factors and mechanisms for 
therapeutic purpose. Primary tumor would create a favora-
ble microenvironment to promote tumor cell metastasis. 
Many mediators and cellular effectors were accumulated 
in the local microenvironment that would contribute to 
tumors metastasis. Some of these key mediators and effec-
tors include primary tumor-derived factors VEGF, CD44, 
N-cadherin, versican and osteopontin (OPN), local stromal-
derived components fibronectin, and tumor/stromal-derived 
factors CXCL12 and MMPs. Among these factors, VEGF, 
N-cadherin and MMPs have been addressed above. Some 
not described in details were summarized in Table 1.

In order to further understand this undiscovered life’s 
mystery-unwanted cell migration, we have reviewed a 
variety of cellular and molecular components involved in 
glioma metastasis and compared them to normal astrocyte 
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migration. In Table 1, we classified them into six catego-
ries based on their migration/metastasis-mediating char-
acteristics. Of course, not all of these factors were being 
researched thoroughly. We have selected 69 factors and 
addressed the most interesting and promising ones with 
known details. Table 1 has shown that about 60% (41 fac-
tors) of the reviewed factors participated in both normal 
astrocyte migration and glioma metastasis. Therefore, 
astrocyte migration and glioma cell infiltration in the brain 
might be regulated by many common mechanisms [7]. 
However, the 18 factors specifically participated in glioma 
metastasis but not in normal astrocyte migration might 
be better candidates for future development of metastatic 
therapies.

In this review, we did not describe possible contributions 
from other cell types in the CNS to tumor metastasis. For 
example, glioma-derived ECM activates microglia to secret 
IL-18 to enhance the migration of glioma cell through NO/
cGMP pathway [35]. In addition, metastatic spreading of 
glioma could also be linked to their extracellular vesicles 
(EVs) released as exosomes to transfer tumor cell derived 
genetic materials and signaling proteins [192, 193]. The 
mechanistic environment caused by suspended and aligned 
nanofibers might also influence glioma cell migration and 
membrane blebbing dynamic, indicating the possible roles 
of biophysical components in glioma metastasis [194].

Furthermore, there must be many more unknown fac-
tors among cell and cell interactions waited to be discov-
ered and identified. Moreover, cell drinking is known to be 
involved in glioma metastasis [193, 195, 196]; however, 
whether this drinking process a preparation of tumor cell to 
enter metastasis still requires future elucidation.

Conclusion

We have previously reported that physical scratch simu-
lating surgery would result in astrocyte reactivation and a 
huge amount of cell migration along the scratch [5, 7, 12]. 
Among these reactive astrocytes, many of them acquired 
tumor cells characteristics through the dysregulation of 
β-catenin signaling pathway [7, 140]. These findings arouse 
our vigilance whether the well-established surgical removal 
of cancer as a choice of glioma and cancer treatment [7]. If 
this is valid, operation on tumor will well-induce a storm 
of cell reactivation and migration along the surgical wound 
- a perfect source of unwanted metastasis. The search for 
answers to the questions of why reactive astrocytes and 
glioma cells are highly migratory after injury, what factors 
lead to or facilitate metastasis, and what are the underly-
ing migration mechanisms becomes urgently necessary so 
as for us to assess whether surgery is one of the causes of 
metastasis and still a proper treatment for cancer.
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