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Background: Autism spectrum disorder (ASD) is defined as a pervasive developmental

disorder which is caused by genetic and environmental risk factors. Besides the core

behavioral symptoms, accumulated results indicate children with ASD also share some

metabolic abnormalities.

Objectives: To analyze the comprehensive metabolic profiles in both of the first-morning

urine and plasma samples collected from the same cohort of autistic boys.

Methods: In this study, 30 autistic boys and 30 tightly matched healthy control (HC)

boys (age range: 2.4∼6.7 years) were recruited. First-morning urine and plasma samples

were collected and the liquid chromatography–mass spectrometry (LC-MS) was applied

to obtain the untargeted metabolic profiles. The acquired data were processed by

multivariate analysis and the screened metabolites were grouped by metabolic pathway.

Results: Different discriminating metabolites were found in plasma and urine samples.

Notably, taurine and catechol levels were decreased in urine but increased in plasma in

the same cohort of ASD children. Enriched pathway analysis revealed that perturbations

in taurine and hypotaurine metabolism, phenylalanine metabolism, and arginine and

proline metabolism could be found in both of the plasma and urine samples.

Conclusion: These preliminary results suggest that a series of common metabolic

perturbations exist in children with ASD, and confirmed the importance to have a

comprehensive analysis of the metabolites in different biological samples to reveal the

full picture of the complex metabolic patterns associated with ASD. Further targeted

analyses are needed to validate these results in a larger cohort.
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INTRODUCTION

Autism spectrum disorder (ASD) is defined as a pervasive
developmental disorder with lifelong symptoms manifested
in the early postnatal period (1). Although the biological
mechanisms are still not fully understood, results of recent
studies suggest that genetic heritability, environmental risk
factors and the interplay effects between them play important
roles in the pathogenesis of ASD (2–4). The diagnosis of ASD is
made mainly according to the children’s behavioral symptoms,
which includes impairments in communication and reciprocal
social interaction, as well as restricted and repetitive behaviors
and interests (5, 6).

In addition to the core symptoms of behavioral characteristics,
accumulated results from recent studies indicate that children
with ASD may also share some patterns of metabolic
abnormalities (7–16). Metabolic alterations related to amino
acids, carbohydrates and vitamins have been observed in ASD
in previously studies (7–16). The untargeted metabolomics
approaches offer a sensitive means to profile a wide range of
metabolites, which will provide more information for further
investigations of the disease mechanisms and to screen potential
biomarkers for the diagnosis of ASD (7, 10, 14). These studies
mainly used blood serum (16), plasma (7, 14, 15) or urine
(8–13) samples separately, and the main methods used to
perform metabolomic analysis were nuclear magnetic resonance
(NMR) spectroscopy (10, 12, 15); liquid chromatography-mass
spectrometry (LC-MS) (7, 14) and gas chromatography-mass
spectrometry (GC-MS) (8, 9). Although some of the results
from previous studies were consistent, there were also many
inconsistent findings, with some of them even appearing
contradictory. These inconsistencies may be related to the
differences in participants’ characteristics (ethnicity, age,
and sex composition); sample types (urine, blood, or saliva)
and methodologies (differences in technical methods in data
acquisition, processing and analysis) chosen for the different
studies. All these mentioned factors may be confounders which
would cause bias and distort the association between the
metabolites and ASD.

In order to eliminate the influence of these confounding
factors, a total of 30 autistic boys and 30 tightly matched healthy
control (HC) boys in a relatively narrow age range (2.4∼6.7 years
old) were recruited in this study. Only boys were recruited in this
study to eliminate the verified sex difference associated in ASD
(17–19). Moreover, both of the first-morning urine and plasma
samples were collected and analyzed to obtain the comprehensive
untargeted metabolic profiles. Results derived from different

Abbreviations: ADI-R, Autism Diagnostic Interview-Revised; ADOS, Autism
Diagnostic Observation Schedule; ASD, Autism spectrum disorder; AUC, Area
under curve; CARS, Childhood Autism Rating Scale; DDA, Data dependent
acquisition; FDR, False discovery rate; GC-MS, Gas chromatography-mass
spectrometry; GDS, Gesell Developmental Schedules; HC, Healthy control; LC-
MS, Liquid chromatography-mass spectrometry; MCCV, Monte-Carlo cross
validation; NMR, Nuclear magnetic resonance; PCA, Principal component
analysis; PKU, Phenylketonuria; PLS-DA, Partial least squares discrimination
analysis; ROC, Receiver operating characteristic; SVM, Support Vector Machine;
UPLC, Ultra performance liquid chromatography; VIP, Variable importance in
the projection.

samples in the same cohort will significantly contribute to a fuller
picture of the comprehensive and complex metabolic patterns
associated with ASD.

MATERIALS AND METHODS

Ethics Statement
This study was approved by the Peking University Institutional
Review Board (IRB00001052-13079). Detailed information on
the aims and protocols of the study were explained to the
parents or legal guardians of the child participants. Written
informed consent was obtained before the involvement of the
child participants in the study.

Participants
Autistic children were recruited from autism rehabilitation
centers in Beijing, China (mainly from Wucailu Rehabilitation
Center). The inclusion criteria for autistic children were:
(1) Being diagnosed with autism which was confirmed by
experienced psychiatrists according to the Diagnostic and
Statistical Manual of Mental Disorders-IV-Text Revision (DSM-
IV-TR, 2000) criteria. (2) Free of antibiotic treatment, prebiotics
and probiotics for at least 4 weeks before sample collection.
(3) The children’s primary caregivers had good reading and
comprehension skills and were able to fill in the relevant
assessment scales. (4) The children’s parents or legal guardians
volunteered to participate in this study and signed the informed
consent. Autistic children with symptoms of other comorbid
neurological or psychiatric disorders were excluded from the
study. Typically developing children in the control group were
tightly matched with the ages of the autistic cases, and recruited
through advertisements in kindergartens in Beijing. Children
in the control group were also matched on the antibiotics,
prebiotics, and probiotics criteria as well. Children were excluded
from the control group if they have psychiatric conditions or
other potentially confounding medical conditions.

Assessment of Autistic Symptom
The following scales were used to assess autistic symptoms in
autistic and typically developing children:

1. Childhood Autism Rating Scale (CARS): A 15-item behavior
rating scale consists of 14 domains that are generally affected
by severe autism, plus one category of general impressions of
autism. It is widely used by psychiatrists during diagnosis of
autism (20).

2. Autism Diagnostic Observation Schedule (ADOS): A semi-
structured, standardized observation tool which is highly
recognized as an evaluativemeasurement for diagnosing ASD.
It includes a number of play-based activities designed to
accurately assess and diagnose ASD based on the results
found across the areas of communication, social interaction,
play/imaginative use of materials, and restricted and repetitive
behaviors (21).

3. Autism Diagnostic Interview-Revised (ADI-R): A
standardized comprehensive interview which has proven
highly useful for diagnosing autism and planning treatment.
It provides categorical results for three domains: qualities of
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reciprocal social interaction; communication and language;
and restricted and repetitive, stereotyped interests and
behaviors. Together with the ADOS, it is recognized as the
current gold standard of ASD diagnosis worldwide (22).

4. Gesell Developmental Schedules (GDS): A measure of
child development which is designed to assess a child’s
neurodevelopmental status on the basis of the development
quotient (DQ) scores in 4 domains: adaption, motor, language
function, and personal/social function (23).

Sample Collection
Blood samples were collected by trained nurses between 7:00 and
9:30 a.m. Parents were previously informed to have their children
fast overnight and allowed only a moderate amount of drinking
water to minimize the potential effects of food and water intake.
Four milliliters of venous blood was collected into chilled EDTA
tubes containing aprotinin (500 KIU/mL blood). Blood samples
were centrifuged at 1,600 g for 15min. Plasma was isolated and
divided into 500 µL aliquots. The fresh first morning midstream
urine was collected in sterile tubes. The samples were placed on
ice and immediately frozen into dry ice and transferred to store
at−80◦C until assay.

Sample Extraction
For plasma sample extraction, 200 µL of methanol was added
to 100 µL of each thawed sample and vortexed for 60 s. The
mixture was centrifuged at 12,000 rpm for 10min at 4◦C. For
urine sample extraction, 100 µL of ddH2O was added to 100 µL
of each thawed sample and vortexed for 5min. The mixture was
centrifuged at 10,000 rpm for 10min at 4◦C. The supernatant
was then filtered by 0.22µm membrane filtration and prepared
for LC-MS analysis. To validate the reproducibility of the LC-MS
system, 20 µL from prepared samples was pooled to generate the
quality control (QC) samples.

Chromatographic Separation and Mass
Spectrometry Analysis
Chromatographic separation was accomplished in an Acquity
UPLC system equipped with an ACQUITY UPLC R© BEH C18
(100mm × 2.1mm, 1.7µm, Waters) column maintained at
40◦C. The temperature of the autosampler was 4◦C. Gradient
elution of analytes was carried out with 0.1% formic acid in
water (A) and 0.1% formic acid in acetonitrile (B) at a flow
rate of 0.25 mL/min. Ten microliter of each sample was injected
after equilibration. An increasing linear gradient of solvent B
(v/v) was used as follows: 0∼1min, 2% B; 1∼9.5min, 2∼50%
B; 9.5∼14min, 50∼98% B; 14∼15min, 98% B; 15∼15.5min,
98∼2% B; 15.5∼17min, 2% B.

The ESI-MSn experiments were executed on the Thermo
LTQOrbitrap XL mass spectrometer with the spray voltage of
4.8 and −4.5 kV in positive and negative modes. Sheath gas
and auxiliary gas were set at 45 and 15 arbitrary units. The
capillary temperature was 325◦C. The voltages of the capillary
and tube were 35 and 50, −15 and −50V in positive and
negative modes. The Orbitrap analyzer scanned over a mass
range of m/z 50–1,000 for full scan at a mass resolution of 60,000.
Data dependent acquisition (DDA) MS/MS experiments were
performed with the CID scan. The normalized collision energy

was 30 eV. Dynamic exclusion was implemented with a repeat
count of 2, and exclusion duration of 15 s.

Data Processing and Analysis
The initial analysis examined the participant demographics of
the two groups with the Statistical Package for the Social Science
version 19.0 (SPSS Inc., Chicago, Illinois) and the GraphPad
Prism version 5.0 (GraphPad Software Inc., San Diego, CA).
Continuous data were checked for normal distribution using
the Shapiro–Wilk test first. For normally distributed data, the
independent two-sample t-tests were used to compare the means
of two groups. For those data that were not normally distributed,
non-parametric tests (Mann–Whitney U-test) were used for
unpaired comparison between groups.

Urine metabolomic data from UPLC/MS were standardized
to eliminate urine volume variability. Multivariate statistics
techniques were used to analyze the multiple variables
simultaneously in order to extract comprehensive information
from the large metabolomics data and to subsequently visualize
and interpret it. Comprehensive and integrative metabolomic
data was mainly analyzed using metaboanalyst 4.0 (https://
www.metaboanalyst.ca/) (24). Metabolomic data was first
normalized by a pooled sample from the HC group and then
log transformation and auto scaling were used during data
processing. Principal component analysis (PCA), which was
considered as one of the most widely used unsupervised
techniques for the analysis of metabolomics data, was used for an
initial exploration of the data mainly to obtain an overview and
reveal clustering or patterns in the data (24, 25). Additionally,
partial least-squares-discriminant analysis (PLS-DA), which was
a typical supervised technique applied to metabolomics data,
was used to construct a model which separated the different
groups of samples on the basis of their metabolite features
(25, 26). The variable importance in the projection (VIP) scores
were calculated to reflect the importance of metabolite features
in the model, and features with a VIP ≥ 1.0 and p ≤ 0.05
were selected as discriminating metabolites between groups
(16, 27). The discriminating metabolites identification and
metabolic pathway analysis were carried out using the methods
described in previous studies (28, 29). To identify models
with good performance, an algorithm based on Monte-Carlo
cross validation (MCCV) coupled with the well-established
algorithm Support Vector Machine (SVM) were used following
the procedure as described in the protocol (14, 24). The
discriminatory power was quantified by multivariate receiver
operator curve (ROC) analysis calculating the area under the
curve (AUC), sensitivity, specificity, and accuracy using the
MetaboAnalyst 4.0 (24). A value of p < 0.05 (two-tailed) was
considered statistically significant, and for multiple comparisons,
the Benjamini–Hochberg procedure was used for controlling the
false discovery rate (FDR).

RESULTS

Participants Characteristics
A total of 60 boys (30 in ASD, 30 in HC group) met the inclusion
criteria and were enrolled in this study. Most of the participants
(98.3%) were Han Chinese, with one health control (1.67%) from
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TABLE 1 | Participant demographics.

ASD HC

n 30 30

Age, month 55.45 ± 2.357 53.01 ± 1.679

GDS

Adaption1
59.83 ± 3.648 99.27 ± 2.229

Gross motor1 70.91 ± 2.763 108.5 ± 2.282

Fine motor1 67.87 ± 3.660 96.27 ± 1.480

Language function1 50.00 ± 3.450 98.41 ± 2.575

Personal/social function1 62.70 ± 3.103 103.1 ± 3.231

CARS 35.20 ± 0.7530

ADOS

Communication

5.433 ± 0.2233

Social interaction 9.433 ± 0.2699

Play/imaginative use of materials 2.067 ± 0.2141

Restricted and repetitive behaviors 2.200 ± 0.1819

ADI-R

Qualities of reciprocal social

interaction

19.41 ± 0.9807

Communication and language 14.76 ± 0.8059

Restricted and repetitive,

stereotyped interests and behaviors

5.966 ± 0.7166

GDS, Gesell Developmental Schedules; CARS, Childhood Autism Rating Scale; ADOS,

Autism Diagnostic Observation Schedule; ADI-R, Autism Diagnostic Interview-Revised.

Data are presented as mean ± SEM unless otherwise indicated.
1p < 0.001.

Hui Minority living in China. Descriptive statistics for baseline
characteristics are presented in Table 1. The two groups were
well-matched for chronological age in a relative narrow range
(age range: 2.6∼6.7 years). The sample size allowed a statistical
power of 0.85 for plasma and urine analysis (software G∗Power,
estimation for Wilcoxon–Mann–Whitney test, two tails, effect
size d = 0.8, α = 0.05). All the children in the ASD group
completed the CARS and ADOS assessments, and 29 of them
completed the ADI-R assessment. Twenty-three autistic children
and 22 HC children completed the GDS assessment. As expected,
autistic children got significantly lower scores in the GDS than
HC children (p < 0.001).

Metabolic Profiling Using Untargeted
Metabolomics in LC-MS Platform
Plasma and urine metabolic profiling was established in an
LC-MS platform to explore metabolic patterns associated
with ASD. A total of 2,911 and 3,484 precursor molecules
were detected in the positive and negative mode in the
plasma samples, and 2,723 and 3,704 precursor molecules
were detected in the positive and negative mode in the
urine samples, respectively.

As is shown in Figure 1 PCA score plot, when labeling the
samples as ASD and HC, no significant patterns of clustering
could be detected in either the urine or plasma samples,
suggesting that it was not possible to identify a valid separation
using this approach. However, it seems that the ASD samples
were more concentrated as compare to the scattered pattern of
HC samples in plasma.

Discriminating Metabolites and
Multivariate Exploratory Analysis
The discriminating metabolites were screened with p ≤ 0.05 and
VIP ≥ 1. When comparing the data of the ASD with HC group
as detected in the positive mode, it is revealed that levels of 176
metabolites were higher and 50 metabolites were lower in the
plasma samples, while levels of 27 and 45metabolites were shown
to be higher and lower in the urine samples (Figure 2A). As
demonstrated in Figure 2B, the 2D scores plot constructed using
partial least squares discrimination analysis (PLS-DA) with these
discriminating metabolites, revealed good separation between
ASD and HC groups (R2 = 0.816, Q2 = 0.624, and Accuracy
= 0.897).

The Discriminating Metabolites
Identification and Biomarker Analysis
A total of 25 and 14 discriminating metabolites were identified
in plasma and urine samples, respectively. The Z-scores
of the discriminating metabolites associated with ASD were
demonstrated in Figure 3. Among them, taurine and catechol
were found to be discriminatingmetabolites in both of the plasma
and urine samples. However, levels of taurine and catechol were
both found to be higher in plasma samples while lower in urine
samples in the ASD as compare to the HC group. The correlation
matrices of these discriminating metabolites were demonstrated
in Supplementary Figure 1.

The algorithm of SVM was used to perform potential
biomarker analysis together with MCCV through balanced
subsampling to identify models with good performance. Based
on the cross validation, the multivariate biomarker models
using 10 discriminating metabolites achieved an AUC of
0.852 (Figure 4A) with sensitivity of 0.833, specificity of 0.800
and accuracy of 0.817 (Supplementary Table 1). The top 10
significant metabolites ranked based on their frequencies of
being selected during cross validation in the models are listed in
Figure 4B.

Metabolic Pathway and Function Analysis
To identify the metabolic pathways associated with ASD, the
discriminating metabolites were introduced in the pathways
enrichment analysis. Results of the enriched pathway analysis
using data from plasma samples revealed that the most perturbed
metabolic pathway in ASD mainly corresponded to taurine
and hypotaurine metabolism, phenylalanine metabolism,
arginine and proline metabolism, valine, leucine and isoleucine
biosynthesis and degradation. While the metabolic pathways
corresponding to taurine and hypotaurine metabolism,
pantothenate and CoA biosynthesis, riboflavin metabolism,
phenylalanine metabolism, and arginine and proline metabolism
were revealed to be perturbed in the ASD urine samples
(Figure 5). The key enriched metabolic pathways implicated in
ASD are summarized in Figure 6.

DISCUSSION

Metabolomics is the study of substrates and products of
metabolism, which provides a tool to compare the profiles of
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FIGURE 1 | Principal Component Analysis (PCA) score plot in ASD (red) and HC (green) boys. Each point represents the metabolome score of a single individual.

(A) Plasma, positive mode; (B) Urine, positive mode. The shaded areas indicate the 95%confidence ellipse regions for each group.

FIGURE 2 | Discriminating metabolites and partial least squares discrimination analysis (PLS-DA). (A) Number of discriminating (DE) metabolites between groups in

plasma and urine samples. (B) Partial least squares discrimination analysis (PLS-DA) score plot in ASD (red) and HC (blue) boys. Each point represents the

metabolome score of a single individual. The shaded areas indicate the 95%confidence ellipse regions for each group.

small-molecule metabolites and identify their perturbations in
metabolic pathways (30, 31). In the present study, levels of 176
and 27 metabolites were found to be higher, while 50 and 45
metabolites were lower in the positive mode in the plasma and
urine samples of the ASD children, respectively. Notably, taurine
and catechol levels were decreased in urine but increased in
plasma in the same cohort of ASD children as compared to
HC children. Results of the enriched pathway analysis using
discriminating metabolites revealed that the most perturbed
metabolic pathway in ASD mainly correspond to taurine and

hypotaurine metabolism, phenylalanine metabolism, arginine
and prolinemetabolism, pantothenate andCoA biosynthesis, and
riboflavin metabolism.

Since metabolite profiling is sensitive to both genetic and
environmental factors, it is considered as a powerful investigative
approach with immense biomedical potential which could
provide a multifactorial overview of an individual’s status (32).
Meanwhile, because it is sensitive to many influence factors,
it is of great importance to control these confounders, such
as age, gender, dietary status and drug intake (33–36). In this

Frontiers in Psychiatry | www.frontiersin.org 5 June 2021 | Volume 12 | Article 657105

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Xu et al. Metabolic Profiles in Autistic Boys

FIGURE 3 | The discriminating metabolites differ between ASD and HC groups. (A,B) Z-scores of the discriminating metabolites were plotted in plasma and urine

samples. (C,D) Levels of taurine and catechol in plasma and urine samples. Data are presented as mean ± SD, *p < 0.05, **p < 0.01.

FIGURE 4 | Potential biomarker analysis using SVM algorithm. (A) ROC curves from different biomarker models using different numbers of features. (B) The top 10

significant metabolites ranked based on their frequencies of being selected during cross validation.
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FIGURE 5 | Overview of metabolic pathway analysis plot with MetPA in plasma (A) and urine (B). Color intensity (white to red) reflects increasing statistical

significance, while circle diameter covaries with pathway impact.

FIGURE 6 | A schema showing the key enriched metabolic pathways implicated in ASD. The increased discriminating metabolites are labeled in red, and decreased

discriminating metabolites are labeled in green, while the green * labeled taurine indicates its decreased level in urine. The yellow, orange, and purple backgrounds

indicate enriched metabolic pathways in urine, plasma and both urine and plasma samples.
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study, we strictly controlled these potential confounders to
explore meaningful metabolic changes associated with ASD.
As a dimensionality-reduction technique, PCA provided a full
picture overview of the metabolic characters without artificial
interference (24, 25). It seems that the ASD group largely
overlapped with HC groups, especially in urine samples. But
compared with the scattered distribution pattern in urine
samples, the plasma samples of ASD only overlapped with part
of the HC group, which suggested that compared with the
diversity found in the HC group, children in the ASD group
may share more similarities in metabolic patterns. And further
analysis of these alterations in metabolic patterns will provide
important information for the understanding of the pathogenesis
of ASD. Additionally, more discriminating metabolites could
be found in plasma than in urine. A relative good separation
between the ASD and HC groups was achieved using PLS-DA
with these discriminating metabolites. However, as a supervised
classification method, the PLS-DA model may be over-fitting to
some extent (37).

When comparing the results of the metabolic perturbations
in plasma and urine associated with ASD, we found that two
discriminating metabolites (taurine and catechol) were identified
in both of the plasma and urine samples. As one of the
most common amino acids in the brain, taurine can act as
a neuromodulator to regulate the balance of excitatory and
inhibitory neuronal activity (38, 39). Additionally, it has also
been suggested that taurine has many positive effects such as
an antioxidant, anti-inflammatory, gut-regulatory and immune
modulator which may alleviate some symptoms associated with
ASD (38, 40–42). Perturbed taurine levels have been found to
be associated with ASD in a number of previous studies (43–
48). However, findings regarding the plasma and urine levels of
taurine are controversial (40, 43–50). Our results demonstrated
that taurine levels were decreased in urine but increased in
plasma in ASD children, which is consistent with some of the
previous studies (43, 44, 46, 48). The opposite trend found in the
urine and plasma samples from ASD children in the same cohort
indicated that levels of taurine in the urine and plasma were
not parallel, which suggest that the altered metabolic patterns
associated with ASD are very complex, and levels of some
metabolites in urine may not mirror their levels in plasma. So we
cannot infer ASD children are lack of some nutrient substances
only based on the lower levels of related metabolites found in
urine samples. The importance to have a detailed analysis of the
metabolites in different biological samples should be emphasized.
Moreover, although there is a consistent opinion that taurine
plays a protective role in ASD, and it has been proposed that
the elevated plasma taurine levels found in ASD is compensatory
against pathogenesis of ASD (such as oxidative stress) (48, 51, 52),
the biological significance of taurine in pathogenesis of ASD still
needs to be further studied.

Catechol, also known as pyrocatechol and 1,2-
dihydroxybenzene, is a naturally occurring and an important
industrial chemical (53). Metabolism of catechol involves several
enzymes including Catechol-O-methyltransferase (COMT),
which catalyzes the O-methylation of various endogenous and
exogenous catecholic substrates (54, 55). It has been suggested

that altered methylation metabolism of endogenous catechols
due to COMT polymorphism may be a risk factor for the
development of certain neurodegenerative disorders, as well as
ASD (55–59). Additionally, this catechol-metabolizing system
may be affected by exogenous factors such as catechol-containing
polyphenols, which provide a feedback inhibition of methylation
of endogenous catechols in vivo (54, 60). For example, the
large amount of dietary catechol and catecholic polyphenols
in organ oil or tea may collectively inhibit the methylation of
endogenous bioactive catechols (54, 60, 61). Moreover, there is
an emerging body of evidences demonstrating alterations in the
gut microbiota composition between children with ASD and
controls (62–64). Changes of catechol levels may also be related
to alterations in gut microbiota, since gut microorganisms play
critical roles in the production of catecholic substrates in gut
lumen (65, 66), and these biologically active catecholic substrates
may also affect the growth rates of some pathogenic bacteria
(67, 68). Endogenous catechols in plasma were found to be
abnormal in some autistic individuals and levels of catechols
and their metabolites were found to be decreased in urine
samples in ASD (59, 69). However, only plasma or urine samples
were collected and measured in these previous studies. It is
noteworthy that the decrease in urine catecholic substrate might
accompany an increase in plasma, as observed in another study
that simultaneously measured both plasma and urine samples
from patients diagnosed with Alzheimer’s disease (70). In this
study, levels of catechol as well as taurine were also found
lower in urine but higher in plasma in the same cohort of
ASD children. As suggested by Fonteh et al. (70), the opposite
trend in plasma and urine may be related to the facts that
plasma contents are regulated by metabolic processes controlling
the absorption, transport, degradation, and excretion of these
molecules, while concentrations in urine will be influenced by the
rate of excretion and reabsorption of these molecules. Certainly,
further studies are required to determine the mechanisms
behind these phenomena. High levels of catechol and its related
metabolites could affect the activity of neurons and were found
to be associated with behavior disturbances in ASD and other
neuropsychiatric disorders (71–73). In this study, the higher
levels in plasma in the ASD group indicated that catechol may
cause some adverse health effects. Further studies are necessary
to clarify the biological role of catechol in ASD.

Although different discriminating metabolites were found
in plasma and urine samples, results of the metabolic pathway
analysis revealed that perturbations in pathways corresponding
to taurine and hypotaurine metabolism, phenylalanine
metabolism and arginine and proline metabolism could be found
in both of the plasma and urine samples. The association of ASD
and phenylketonuria (PKU), a disease induced by deficiency in
the metabolism of phenylalanine, has been well-documented,
and children with PKU often show some autistic-like behavior
(74–76). Significant differences in urine and plasma levels of
phenylalanine have also been found to be associated with ASD
in several independent previously published studies (9, 77–82),
although some of these results were contradictory, all their data
points to the perturbation of phenylalanine metabolism in ASD.
Our results further confirmed this association, as perturbed
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phenylalanine metabolism in ASD was found in both of the
metabolic pathway analysis results from the urine and plasma
samples. Further studies are warranted to assess the diagnostic
value of perturbation in the phenylalanine metabolism, as well as
its therapeutic potential (83).

For the arginine and proline metabolism, decreased renal
clearance of arginine has been found in ASD which indicated
increased arginine transporter activity, and results of research
on velocardiofacial (22q11.2 deletion) syndrome suggest that
individuals with elevated plasma proline levels and the
COMTMET genotype were more likely to present with severe
autism symptomatology (84). It has been suggested that proline
plays a role in the modulation of brain function including its
regulation of the basal function of some glutamate synapses,
and abnormally elevated levels of proline in plasma were
found to be associated with higher incidence of seizures and
intellectual disability in hyperprolinemias, which may be related
to a proline-induced reduction in glutamate release (85–87).
Reduced glutamate release of the cerebral cortex has been found
in the mouse model of ASD (88, 89) and abnormal glutamate
concentrations in the brain have also been reported in individuals
with ASD (90, 91).

The strength of our study includes: (1) To our knowledge, this
is the first study to collectively analyze the untargeted metabolic
profiles from both of the plasma and urine samples obtained at
the same time point from the same cohort of ASD children, which
gave us the opportunity to see a more comprehensive picture of
the full metabolic status associated with ASD; (2) Diagnosis of
ASD was not only made according to the DSM-IV criteria, but
also confirmed with ADOS and ADI-R, which were considered as
the gold standard; (3) The participants involved in this study were
only boys and were tightly matched in a relatively narrow age
range to minimize the potential confounding effects associated
with gender and age. However, as a preliminary study, there are
also several limitations which ought to be mentioned: (1) The
sample size in this study is relatively small, which may decrease
the statistical power; (2) There was no validation group in this
study to test the results in an independent cohort; (3) Participants
in this study were mainly from north China and most of them
were from the Han population, and the narrow age range may
affect the external validation of the results; (4) Although all the
samples were collected after an overnight fasting to minimize
the potential effects of food and water intake, variations in
children’s recent dietary preferences were not strictly controlled
in this study. These limitations should be considered when data
are interpreted.

These preliminary results, despite the sample size, identified
substantial biochemical differences and several metabolic
pathways associated with ASD, which may improve our
understanding of the biochemical mechanisms of ASD. Further
targeted analyses in a larger cohort are needed to validate these
preliminary results in this study. Additionally, the ROC curve
results have the potential to contribute to the diagnosis of ASD,
but merit further investigations in larger cohorts especially
among other developmental disorders to assess its specificity
and to screen for potential ASD-specific biomarkers. And

results from these studies, together with other systems biology
approaches such as transcriptomics would also provide new
clues for the individualized biomedical treatment for ASD.

In summary, results of the present study suggest that a series
of common perturbations in the metabolic profile may exist in
children with ASD, which are possibly associated with genetic
or epigenetic variations in metabolic enzymes, gastrointestinal
dysfunctions, and nutrient deficiency. It also highlights the
importance of having a comprehensive analysis of themetabolites
in different biological samples to reveal the full picture of the
complex metabolic patterns associated with ASD. These results
and further related studies would provide new clues for study of
the mechanism and systemic biomedical treatment for ASD.
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